Metamath Proof Explorer


Theorem isfusgr

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypothesis isfusgr.v V = Vtx G
Assertion isfusgr G FinUSGraph G USGraph V Fin

Proof

Step Hyp Ref Expression
1 isfusgr.v V = Vtx G
2 fveq2 g = G Vtx g = Vtx G
3 2 1 eqtr4di g = G Vtx g = V
4 3 eleq1d g = G Vtx g Fin V Fin
5 df-fusgr FinUSGraph = g USGraph | Vtx g Fin
6 4 5 elrab2 G FinUSGraph G USGraph V Fin