Metamath Proof Explorer


Theorem isfusgrcl

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 9-Jan-2020)

Ref Expression
Assertion isfusgrcl GFinUSGraphGUSGraphVtxG0

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 isfusgr GFinUSGraphGUSGraphVtxGFin
3 fvex VtxGV
4 hashclb VtxGVVtxGFinVtxG0
5 3 4 mp1i GUSGraphVtxGFinVtxG0
6 5 pm5.32i GUSGraphVtxGFinGUSGraphVtxG0
7 2 6 bitri GFinUSGraphGUSGraphVtxG0