Metamath Proof Explorer


Theorem isfusgrcl

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 9-Jan-2020)

Ref Expression
Assertion isfusgrcl G FinUSGraph G USGraph Vtx G 0

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 isfusgr G FinUSGraph G USGraph Vtx G Fin
3 fvex Vtx G V
4 hashclb Vtx G V Vtx G Fin Vtx G 0
5 3 4 mp1i G USGraph Vtx G Fin Vtx G 0
6 5 pm5.32i G USGraph Vtx G Fin G USGraph Vtx G 0
7 2 6 bitri G FinUSGraph G USGraph Vtx G 0