Metamath Proof Explorer


Theorem isgbo

Description: The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion isgbo Z GoldbachOdd Z Odd p q r p Odd q Odd r Odd Z = p + q + r

Proof

Step Hyp Ref Expression
1 eqeq1 z = Z z = p + q + r Z = p + q + r
2 1 anbi2d z = Z p Odd q Odd r Odd z = p + q + r p Odd q Odd r Odd Z = p + q + r
3 2 rexbidv z = Z r p Odd q Odd r Odd z = p + q + r r p Odd q Odd r Odd Z = p + q + r
4 3 2rexbidv z = Z p q r p Odd q Odd r Odd z = p + q + r p q r p Odd q Odd r Odd Z = p + q + r
5 df-gbo GoldbachOdd = z Odd | p q r p Odd q Odd r Odd z = p + q + r
6 4 5 elrab2 Z GoldbachOdd Z Odd p q r p Odd q Odd r Odd Z = p + q + r