Metamath Proof Explorer


Theorem isghm

Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014) (Proof shortened by SN, 5-Jun-2025)

Ref Expression
Hypotheses isghm.w X = Base S
isghm.x Y = Base T
isghm.a + ˙ = + S
isghm.b ˙ = + T
Assertion isghm F S GrpHom T S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v

Proof

Step Hyp Ref Expression
1 isghm.w X = Base S
2 isghm.x Y = Base T
3 isghm.a + ˙ = + S
4 isghm.b ˙ = + T
5 df-ghm GrpHom = s Grp , t Grp f | [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v
6 5 elmpocl F S GrpHom T S Grp T Grp
7 fvex Base s V
8 feq2 w = Base s f : w Base t f : Base s Base t
9 raleq w = Base s v w f u + s v = f u + t f v v Base s f u + s v = f u + t f v
10 9 raleqbi1dv w = Base s u w v w f u + s v = f u + t f v u Base s v Base s f u + s v = f u + t f v
11 8 10 anbi12d w = Base s f : w Base t u w v w f u + s v = f u + t f v f : Base s Base t u Base s v Base s f u + s v = f u + t f v
12 7 11 sbcie [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v f : Base s Base t u Base s v Base s f u + s v = f u + t f v
13 fveq2 s = S Base s = Base S
14 13 1 eqtr4di s = S Base s = X
15 14 adantr s = S t = T Base s = X
16 fveq2 t = T Base t = Base T
17 16 2 eqtr4di t = T Base t = Y
18 17 adantl s = S t = T Base t = Y
19 15 18 feq23d s = S t = T f : Base s Base t f : X Y
20 fveq2 s = S + s = + S
21 20 3 eqtr4di s = S + s = + ˙
22 21 oveqd s = S u + s v = u + ˙ v
23 22 fveq2d s = S f u + s v = f u + ˙ v
24 fveq2 t = T + t = + T
25 24 4 eqtr4di t = T + t = ˙
26 25 oveqd t = T f u + t f v = f u ˙ f v
27 23 26 eqeqan12d s = S t = T f u + s v = f u + t f v f u + ˙ v = f u ˙ f v
28 15 27 raleqbidv s = S t = T v Base s f u + s v = f u + t f v v X f u + ˙ v = f u ˙ f v
29 15 28 raleqbidv s = S t = T u Base s v Base s f u + s v = f u + t f v u X v X f u + ˙ v = f u ˙ f v
30 19 29 anbi12d s = S t = T f : Base s Base t u Base s v Base s f u + s v = f u + t f v f : X Y u X v X f u + ˙ v = f u ˙ f v
31 12 30 bitrid s = S t = T [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v f : X Y u X v X f u + ˙ v = f u ˙ f v
32 31 abbidv s = S t = T f | [˙Base s / w]˙ f : w Base t u w v w f u + s v = f u + t f v = f | f : X Y u X v X f u + ˙ v = f u ˙ f v
33 2 fvexi Y V
34 fsetex Y V f | f : X Y V
35 33 34 ax-mp f | f : X Y V
36 abanssl f | f : X Y u X v X f u + ˙ v = f u ˙ f v f | f : X Y
37 35 36 ssexi f | f : X Y u X v X f u + ˙ v = f u ˙ f v V
38 32 5 37 ovmpoa S Grp T Grp S GrpHom T = f | f : X Y u X v X f u + ˙ v = f u ˙ f v
39 38 eleq2d S Grp T Grp F S GrpHom T F f | f : X Y u X v X f u + ˙ v = f u ˙ f v
40 1 fvexi X V
41 fex2 F : X Y X V Y V F V
42 40 33 41 mp3an23 F : X Y F V
43 42 adantr F : X Y u X v X F u + ˙ v = F u ˙ F v F V
44 feq1 f = F f : X Y F : X Y
45 fveq1 f = F f u + ˙ v = F u + ˙ v
46 fveq1 f = F f u = F u
47 fveq1 f = F f v = F v
48 46 47 oveq12d f = F f u ˙ f v = F u ˙ F v
49 45 48 eqeq12d f = F f u + ˙ v = f u ˙ f v F u + ˙ v = F u ˙ F v
50 49 2ralbidv f = F u X v X f u + ˙ v = f u ˙ f v u X v X F u + ˙ v = F u ˙ F v
51 44 50 anbi12d f = F f : X Y u X v X f u + ˙ v = f u ˙ f v F : X Y u X v X F u + ˙ v = F u ˙ F v
52 43 51 elab3 F f | f : X Y u X v X f u + ˙ v = f u ˙ f v F : X Y u X v X F u + ˙ v = F u ˙ F v
53 39 52 bitrdi S Grp T Grp F S GrpHom T F : X Y u X v X F u + ˙ v = F u ˙ F v
54 6 53 biadanii F S GrpHom T S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v