Metamath Proof Explorer


Theorem isghm3

Description: Property of a group homomorphism, similar to ismhm . (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses isghm.w X = Base S
isghm.x Y = Base T
isghm.a + ˙ = + S
isghm.b ˙ = + T
Assertion isghm3 S Grp T Grp F S GrpHom T F : X Y u X v X F u + ˙ v = F u ˙ F v

Proof

Step Hyp Ref Expression
1 isghm.w X = Base S
2 isghm.x Y = Base T
3 isghm.a + ˙ = + S
4 isghm.b ˙ = + T
5 1 2 3 4 isghm F S GrpHom T S Grp T Grp F : X Y u X v X F u + ˙ v = F u ˙ F v
6 5 baib S Grp T Grp F S GrpHom T F : X Y u X v X F u + ˙ v = F u ˙ F v