Database
BASIC ALGEBRAIC STRUCTURES
Groups
Elementary theory of group homomorphisms
isghmd
Next ⟩
ghmmhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
isghmd
Description:
Deduction for a group homomorphism.
(Contributed by
Stefan O'Rear
, 4-Feb-2015)
Ref
Expression
Hypotheses
isghmd.x
⊢
X
=
Base
S
isghmd.y
⊢
Y
=
Base
T
isghmd.a
⊢
+
˙
=
+
S
isghmd.b
⊢
⨣
˙
=
+
T
isghmd.s
⊢
φ
→
S
∈
Grp
isghmd.t
⊢
φ
→
T
∈
Grp
isghmd.f
⊢
φ
→
F
:
X
⟶
Y
isghmd.l
⊢
φ
∧
x
∈
X
∧
y
∈
X
→
F
⁡
x
+
˙
y
=
F
⁡
x
⨣
˙
F
⁡
y
Assertion
isghmd
⊢
φ
→
F
∈
S
GrpHom
T
Proof
Step
Hyp
Ref
Expression
1
isghmd.x
⊢
X
=
Base
S
2
isghmd.y
⊢
Y
=
Base
T
3
isghmd.a
⊢
+
˙
=
+
S
4
isghmd.b
⊢
⨣
˙
=
+
T
5
isghmd.s
⊢
φ
→
S
∈
Grp
6
isghmd.t
⊢
φ
→
T
∈
Grp
7
isghmd.f
⊢
φ
→
F
:
X
⟶
Y
8
isghmd.l
⊢
φ
∧
x
∈
X
∧
y
∈
X
→
F
⁡
x
+
˙
y
=
F
⁡
x
⨣
˙
F
⁡
y
9
8
ralrimivva
⊢
φ
→
∀
x
∈
X
∀
y
∈
X
F
⁡
x
+
˙
y
=
F
⁡
x
⨣
˙
F
⁡
y
10
7
9
jca
⊢
φ
→
F
:
X
⟶
Y
∧
∀
x
∈
X
∀
y
∈
X
F
⁡
x
+
˙
y
=
F
⁡
x
⨣
˙
F
⁡
y
11
1
2
3
4
isghm
⊢
F
∈
S
GrpHom
T
↔
S
∈
Grp
∧
T
∈
Grp
∧
F
:
X
⟶
Y
∧
∀
x
∈
X
∀
y
∈
X
F
⁡
x
+
˙
y
=
F
⁡
x
⨣
˙
F
⁡
y
12
5
6
10
11
syl21anbrc
⊢
φ
→
F
∈
S
GrpHom
T