Metamath Proof Explorer


Theorem isghmd

Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)

Ref Expression
Hypotheses isghmd.x X = Base S
isghmd.y Y = Base T
isghmd.a + ˙ = + S
isghmd.b ˙ = + T
isghmd.s φ S Grp
isghmd.t φ T Grp
isghmd.f φ F : X Y
isghmd.l φ x X y X F x + ˙ y = F x ˙ F y
Assertion isghmd φ F S GrpHom T

Proof

Step Hyp Ref Expression
1 isghmd.x X = Base S
2 isghmd.y Y = Base T
3 isghmd.a + ˙ = + S
4 isghmd.b ˙ = + T
5 isghmd.s φ S Grp
6 isghmd.t φ T Grp
7 isghmd.f φ F : X Y
8 isghmd.l φ x X y X F x + ˙ y = F x ˙ F y
9 8 ralrimivva φ x X y X F x + ˙ y = F x ˙ F y
10 7 9 jca φ F : X Y x X y X F x + ˙ y = F x ˙ F y
11 1 2 3 4 isghm F S GrpHom T S Grp T Grp F : X Y x X y X F x + ˙ y = F x ˙ F y
12 5 6 10 11 syl21anbrc φ F S GrpHom T