Metamath Proof Explorer


Theorem isgim

Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses isgim.b B = Base R
isgim.c C = Base S
Assertion isgim F R GrpIso S F R GrpHom S F : B 1-1 onto C

Proof

Step Hyp Ref Expression
1 isgim.b B = Base R
2 isgim.c C = Base S
3 df-3an R Grp S Grp F c R GrpHom S | c : B 1-1 onto C R Grp S Grp F c R GrpHom S | c : B 1-1 onto C
4 df-gim GrpIso = a Grp , b Grp c a GrpHom b | c : Base a 1-1 onto Base b
5 ovex a GrpHom b V
6 5 rabex c a GrpHom b | c : Base a 1-1 onto Base b V
7 oveq12 a = R b = S a GrpHom b = R GrpHom S
8 fveq2 a = R Base a = Base R
9 8 1 eqtr4di a = R Base a = B
10 fveq2 b = S Base b = Base S
11 10 2 eqtr4di b = S Base b = C
12 f1oeq23 Base a = B Base b = C c : Base a 1-1 onto Base b c : B 1-1 onto C
13 9 11 12 syl2an a = R b = S c : Base a 1-1 onto Base b c : B 1-1 onto C
14 7 13 rabeqbidv a = R b = S c a GrpHom b | c : Base a 1-1 onto Base b = c R GrpHom S | c : B 1-1 onto C
15 4 6 14 elovmpo F R GrpIso S R Grp S Grp F c R GrpHom S | c : B 1-1 onto C
16 ghmgrp1 F R GrpHom S R Grp
17 ghmgrp2 F R GrpHom S S Grp
18 16 17 jca F R GrpHom S R Grp S Grp
19 18 adantr F R GrpHom S F : B 1-1 onto C R Grp S Grp
20 19 pm4.71ri F R GrpHom S F : B 1-1 onto C R Grp S Grp F R GrpHom S F : B 1-1 onto C
21 f1oeq1 c = F c : B 1-1 onto C F : B 1-1 onto C
22 21 elrab F c R GrpHom S | c : B 1-1 onto C F R GrpHom S F : B 1-1 onto C
23 22 anbi2i R Grp S Grp F c R GrpHom S | c : B 1-1 onto C R Grp S Grp F R GrpHom S F : B 1-1 onto C
24 20 23 bitr4i F R GrpHom S F : B 1-1 onto C R Grp S Grp F c R GrpHom S | c : B 1-1 onto C
25 3 15 24 3bitr4i F R GrpIso S F R GrpHom S F : B 1-1 onto C