Metamath Proof Explorer


Theorem isgrp

Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses isgrp.b B = Base G
isgrp.p + ˙ = + G
isgrp.z 0 ˙ = 0 G
Assertion isgrp G Grp G Mnd a B m B m + ˙ a = 0 ˙

Proof

Step Hyp Ref Expression
1 isgrp.b B = Base G
2 isgrp.p + ˙ = + G
3 isgrp.z 0 ˙ = 0 G
4 fveq2 g = G Base g = Base G
5 4 1 eqtr4di g = G Base g = B
6 fveq2 g = G + g = + G
7 6 2 eqtr4di g = G + g = + ˙
8 7 oveqd g = G m + g a = m + ˙ a
9 fveq2 g = G 0 g = 0 G
10 9 3 eqtr4di g = G 0 g = 0 ˙
11 8 10 eqeq12d g = G m + g a = 0 g m + ˙ a = 0 ˙
12 5 11 rexeqbidv g = G m Base g m + g a = 0 g m B m + ˙ a = 0 ˙
13 5 12 raleqbidv g = G a Base g m Base g m + g a = 0 g a B m B m + ˙ a = 0 ˙
14 df-grp Grp = g Mnd | a Base g m Base g m + g a = 0 g
15 13 14 elrab2 G Grp G Mnd a B m B m + ˙ a = 0 ˙