Metamath Proof Explorer


Theorem isgrpda

Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009) (New usage is discouraged.)

Ref Expression
Hypotheses isgrpda.1 φ X V
isgrpda.2 φ G : X × X X
isgrpda.3 φ x X y X z X x G y G z = x G y G z
isgrpda.4 φ U X
isgrpda.5 φ x X U G x = x
isgrpda.6 φ x X n X n G x = U
Assertion isgrpda φ G GrpOp

Proof

Step Hyp Ref Expression
1 isgrpda.1 φ X V
2 isgrpda.2 φ G : X × X X
3 isgrpda.3 φ x X y X z X x G y G z = x G y G z
4 isgrpda.4 φ U X
5 isgrpda.5 φ x X U G x = x
6 isgrpda.6 φ x X n X n G x = U
7 3 ralrimivvva φ x X y X z X x G y G z = x G y G z
8 oveq1 y = n y G x = n G x
9 8 eqeq1d y = n y G x = U n G x = U
10 9 cbvrexvw y X y G x = U n X n G x = U
11 6 10 sylibr φ x X y X y G x = U
12 5 11 jca φ x X U G x = x y X y G x = U
13 12 ralrimiva φ x X U G x = x y X y G x = U
14 oveq1 u = U u G x = U G x
15 14 eqeq1d u = U u G x = x U G x = x
16 eqeq2 u = U y G x = u y G x = U
17 16 rexbidv u = U y X y G x = u y X y G x = U
18 15 17 anbi12d u = U u G x = x y X y G x = u U G x = x y X y G x = U
19 18 ralbidv u = U x X u G x = x y X y G x = u x X U G x = x y X y G x = U
20 19 rspcev U X x X U G x = x y X y G x = U u X x X u G x = x y X y G x = u
21 4 13 20 syl2anc φ u X x X u G x = x y X y G x = u
22 4 adantr φ x X U X
23 simpr φ x X x X
24 5 eqcomd φ x X x = U G x
25 rspceov U X x X x = U G x y X z X x = y G z
26 22 23 24 25 syl3anc φ x X y X z X x = y G z
27 26 ralrimiva φ x X y X z X x = y G z
28 foov G : X × X onto X G : X × X X x X y X z X x = y G z
29 2 27 28 sylanbrc φ G : X × X onto X
30 forn G : X × X onto X ran G = X
31 29 30 syl φ ran G = X
32 31 sqxpeqd φ ran G × ran G = X × X
33 32 31 feq23d φ G : ran G × ran G ran G G : X × X X
34 31 raleqdv φ z ran G x G y G z = x G y G z z X x G y G z = x G y G z
35 31 34 raleqbidv φ y ran G z ran G x G y G z = x G y G z y X z X x G y G z = x G y G z
36 31 35 raleqbidv φ x ran G y ran G z ran G x G y G z = x G y G z x X y X z X x G y G z = x G y G z
37 31 rexeqdv φ y ran G y G x = u y X y G x = u
38 37 anbi2d φ u G x = x y ran G y G x = u u G x = x y X y G x = u
39 31 38 raleqbidv φ x ran G u G x = x y ran G y G x = u x X u G x = x y X y G x = u
40 31 39 rexeqbidv φ u ran G x ran G u G x = x y ran G y G x = u u X x X u G x = x y X y G x = u
41 33 36 40 3anbi123d φ G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z u ran G x ran G u G x = x y ran G y G x = u G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
42 2 7 21 41 mpbir3and φ G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z u ran G x ran G u G x = x y ran G y G x = u
43 1 1 xpexd φ X × X V
44 2 43 fexd φ G V
45 eqid ran G = ran G
46 45 isgrpo G V G GrpOp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z u ran G x ran G u G x = x y ran G y G x = u
47 44 46 syl φ G GrpOp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z u ran G x ran G u G x = x y ran G y G x = u
48 42 47 mpbird φ G GrpOp