Step |
Hyp |
Ref |
Expression |
1 |
|
isgrpda.1 |
|
2 |
|
isgrpda.2 |
|
3 |
|
isgrpda.3 |
|
4 |
|
isgrpda.4 |
|
5 |
|
isgrpda.5 |
|
6 |
|
isgrpda.6 |
|
7 |
3
|
ralrimivvva |
|
8 |
|
oveq1 |
|
9 |
8
|
eqeq1d |
|
10 |
9
|
cbvrexvw |
|
11 |
6 10
|
sylibr |
|
12 |
5 11
|
jca |
|
13 |
12
|
ralrimiva |
|
14 |
|
oveq1 |
|
15 |
14
|
eqeq1d |
|
16 |
|
eqeq2 |
|
17 |
16
|
rexbidv |
|
18 |
15 17
|
anbi12d |
|
19 |
18
|
ralbidv |
|
20 |
19
|
rspcev |
|
21 |
4 13 20
|
syl2anc |
|
22 |
4
|
adantr |
|
23 |
|
simpr |
|
24 |
5
|
eqcomd |
|
25 |
|
rspceov |
|
26 |
22 23 24 25
|
syl3anc |
|
27 |
26
|
ralrimiva |
|
28 |
|
foov |
|
29 |
2 27 28
|
sylanbrc |
|
30 |
|
forn |
|
31 |
29 30
|
syl |
|
32 |
31
|
sqxpeqd |
|
33 |
32 31
|
feq23d |
|
34 |
31
|
raleqdv |
|
35 |
31 34
|
raleqbidv |
|
36 |
31 35
|
raleqbidv |
|
37 |
31
|
rexeqdv |
|
38 |
37
|
anbi2d |
|
39 |
31 38
|
raleqbidv |
|
40 |
31 39
|
rexeqbidv |
|
41 |
33 36 40
|
3anbi123d |
|
42 |
2 7 21 41
|
mpbir3and |
|
43 |
1 1
|
xpexd |
|
44 |
2 43
|
fexd |
|
45 |
|
eqid |
|
46 |
45
|
isgrpo |
|
47 |
44 46
|
syl |
|
48 |
42 47
|
mpbird |
|