Metamath Proof Explorer


Theorem isgrpid2

Description: Properties showing that an element Z is the identity element of a group. (Contributed by NM, 7-Aug-2013)

Ref Expression
Hypotheses grpinveu.b B = Base G
grpinveu.p + ˙ = + G
grpinveu.o 0 ˙ = 0 G
Assertion isgrpid2 G Grp Z B Z + ˙ Z = Z 0 ˙ = Z

Proof

Step Hyp Ref Expression
1 grpinveu.b B = Base G
2 grpinveu.p + ˙ = + G
3 grpinveu.o 0 ˙ = 0 G
4 1 2 3 grpid G Grp Z B Z + ˙ Z = Z 0 ˙ = Z
5 4 biimpd G Grp Z B Z + ˙ Z = Z 0 ˙ = Z
6 5 expimpd G Grp Z B Z + ˙ Z = Z 0 ˙ = Z
7 1 3 grpidcl G Grp 0 ˙ B
8 1 2 3 grplid G Grp 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙
9 7 8 mpdan G Grp 0 ˙ + ˙ 0 ˙ = 0 ˙
10 7 9 jca G Grp 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙
11 eleq1 0 ˙ = Z 0 ˙ B Z B
12 id 0 ˙ = Z 0 ˙ = Z
13 12 12 oveq12d 0 ˙ = Z 0 ˙ + ˙ 0 ˙ = Z + ˙ Z
14 13 12 eqeq12d 0 ˙ = Z 0 ˙ + ˙ 0 ˙ = 0 ˙ Z + ˙ Z = Z
15 11 14 anbi12d 0 ˙ = Z 0 ˙ B 0 ˙ + ˙ 0 ˙ = 0 ˙ Z B Z + ˙ Z = Z
16 10 15 syl5ibcom G Grp 0 ˙ = Z Z B Z + ˙ Z = Z
17 6 16 impbid G Grp Z B Z + ˙ Z = Z 0 ˙ = Z