Metamath Proof Explorer


Theorem ishashinf

Description: Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf . (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Assertion ishashinf ¬ A Fin n x 𝒫 A x = n

Proof

Step Hyp Ref Expression
1 fzfid n 1 n Fin
2 ficardom 1 n Fin card 1 n ω
3 1 2 syl n card 1 n ω
4 isinf ¬ A Fin a ω x x A x a
5 breq2 a = card 1 n x a x card 1 n
6 5 anbi2d a = card 1 n x A x a x A x card 1 n
7 6 exbidv a = card 1 n x x A x a x x A x card 1 n
8 7 rspcva card 1 n ω a ω x x A x a x x A x card 1 n
9 3 4 8 syl2anr ¬ A Fin n x x A x card 1 n
10 velpw x 𝒫 A x A
11 10 biimpri x A x 𝒫 A
12 11 a1i ¬ A Fin n x A x 𝒫 A
13 hasheni x card 1 n x = card 1 n
14 13 adantl ¬ A Fin n x card 1 n x = card 1 n
15 hashcard 1 n Fin card 1 n = 1 n
16 1 15 syl n card 1 n = 1 n
17 nnnn0 n n 0
18 hashfz1 n 0 1 n = n
19 17 18 syl n 1 n = n
20 16 19 eqtrd n card 1 n = n
21 20 ad2antlr ¬ A Fin n x card 1 n card 1 n = n
22 14 21 eqtrd ¬ A Fin n x card 1 n x = n
23 22 ex ¬ A Fin n x card 1 n x = n
24 12 23 anim12d ¬ A Fin n x A x card 1 n x 𝒫 A x = n
25 24 eximdv ¬ A Fin n x x A x card 1 n x x 𝒫 A x = n
26 9 25 mpd ¬ A Fin n x x 𝒫 A x = n
27 df-rex x 𝒫 A x = n x x 𝒫 A x = n
28 26 27 sylibr ¬ A Fin n x 𝒫 A x = n
29 28 ralrimiva ¬ A Fin n x 𝒫 A x = n