Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
ishaus
Next ⟩
iscnrm
Metamath Proof Explorer
Ascii
Unicode
Theorem
ishaus
Description:
The predicate "is a Hausdorff space".
(Contributed by
NM
, 8-Mar-2007)
Ref
Expression
Hypothesis
ist0.1
⊢
X
=
⋃
J
Assertion
ishaus
⊢
J
∈
Haus
↔
J
∈
Top
∧
∀
x
∈
X
∀
y
∈
X
x
≠
y
→
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
Proof
Step
Hyp
Ref
Expression
1
ist0.1
⊢
X
=
⋃
J
2
unieq
⊢
j
=
J
→
⋃
j
=
⋃
J
3
2
1
eqtr4di
⊢
j
=
J
→
⋃
j
=
X
4
rexeq
⊢
j
=
J
→
∃
m
∈
j
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
↔
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
5
4
rexeqbi1dv
⊢
j
=
J
→
∃
n
∈
j
∃
m
∈
j
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
↔
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
6
5
imbi2d
⊢
j
=
J
→
x
≠
y
→
∃
n
∈
j
∃
m
∈
j
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
↔
x
≠
y
→
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
7
3
6
raleqbidv
⊢
j
=
J
→
∀
y
∈
⋃
j
x
≠
y
→
∃
n
∈
j
∃
m
∈
j
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
↔
∀
y
∈
X
x
≠
y
→
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
8
3
7
raleqbidv
⊢
j
=
J
→
∀
x
∈
⋃
j
∀
y
∈
⋃
j
x
≠
y
→
∃
n
∈
j
∃
m
∈
j
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
↔
∀
x
∈
X
∀
y
∈
X
x
≠
y
→
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
9
df-haus
⊢
Haus
=
j
∈
Top
|
∀
x
∈
⋃
j
∀
y
∈
⋃
j
x
≠
y
→
∃
n
∈
j
∃
m
∈
j
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅
10
8
9
elrab2
⊢
J
∈
Haus
↔
J
∈
Top
∧
∀
x
∈
X
∀
y
∈
X
x
≠
y
→
∃
n
∈
J
∃
m
∈
J
x
∈
n
∧
y
∈
m
∧
n
∩
m
=
∅