Metamath Proof Explorer


Theorem ishl2

Description: A Hilbert space is a complete subcomplex pre-Hilbert space over RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f F = Scalar W
hlress.k K = Base F
Assertion ishl2 W ℂHil W CMetSp W CPreHil K

Proof

Step Hyp Ref Expression
1 hlress.f F = Scalar W
2 hlress.k K = Base F
3 ishl W ℂHil W Ban W CPreHil
4 df-3an W CMetSp K W CPreHil W CMetSp K W CPreHil
5 3ancomb W CMetSp W CPreHil K W CMetSp K W CPreHil
6 cphnvc W CPreHil W NrmVec
7 1 isbn W Ban W NrmVec W CMetSp F CMetSp
8 3anass W NrmVec W CMetSp F CMetSp W NrmVec W CMetSp F CMetSp
9 7 8 bitri W Ban W NrmVec W CMetSp F CMetSp
10 9 baib W NrmVec W Ban W CMetSp F CMetSp
11 6 10 syl W CPreHil W Ban W CMetSp F CMetSp
12 1 2 cphsca W CPreHil F = fld 𝑠 K
13 12 eleq1d W CPreHil F CMetSp fld 𝑠 K CMetSp
14 1 2 cphsubrg W CPreHil K SubRing fld
15 cphlvec W CPreHil W LVec
16 1 lvecdrng W LVec F DivRing
17 15 16 syl W CPreHil F DivRing
18 12 17 eqeltrrd W CPreHil fld 𝑠 K DivRing
19 eqid fld 𝑠 K = fld 𝑠 K
20 19 cncdrg K SubRing fld fld 𝑠 K DivRing fld 𝑠 K CMetSp K
21 20 3expia K SubRing fld fld 𝑠 K DivRing fld 𝑠 K CMetSp K
22 14 18 21 syl2anc W CPreHil fld 𝑠 K CMetSp K
23 elpri K K = K =
24 oveq2 K = fld 𝑠 K = fld 𝑠
25 eqid TopOpen fld = TopOpen fld
26 25 recld2 Clsd TopOpen fld
27 cncms fld CMetSp
28 ax-resscn
29 eqid fld 𝑠 = fld 𝑠
30 cnfldbas = Base fld
31 29 30 25 cmsss fld CMetSp fld 𝑠 CMetSp Clsd TopOpen fld
32 27 28 31 mp2an fld 𝑠 CMetSp Clsd TopOpen fld
33 26 32 mpbir fld 𝑠 CMetSp
34 24 33 eqeltrdi K = fld 𝑠 K CMetSp
35 oveq2 K = fld 𝑠 K = fld 𝑠
36 30 ressid fld CMetSp fld 𝑠 = fld
37 27 36 ax-mp fld 𝑠 = fld
38 37 27 eqeltri fld 𝑠 CMetSp
39 35 38 eqeltrdi K = fld 𝑠 K CMetSp
40 34 39 jaoi K = K = fld 𝑠 K CMetSp
41 23 40 syl K fld 𝑠 K CMetSp
42 22 41 impbid1 W CPreHil fld 𝑠 K CMetSp K
43 13 42 bitrd W CPreHil F CMetSp K
44 43 anbi2d W CPreHil W CMetSp F CMetSp W CMetSp K
45 11 44 bitrd W CPreHil W Ban W CMetSp K
46 45 pm5.32ri W Ban W CPreHil W CMetSp K W CPreHil
47 4 5 46 3bitr4ri W Ban W CPreHil W CMetSp W CPreHil K
48 3 47 bitri W ℂHil W CMetSp W CPreHil K