Metamath Proof Explorer


Theorem ishlatiN

Description: Properties that determine a Hilbert lattice. (Contributed by NM, 13-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses ishlati.1 K OML
ishlati.2 K CLat
ishlati.3 K AtLat
ishlati.b B = Base K
ishlati.l ˙ = K
ishlati.s < ˙ = < K
ishlati.j ˙ = join K
ishlati.z 0 ˙ = 0. K
ishlati.u 1 ˙ = 1. K
ishlati.a A = Atoms K
ishlati.9 x A y A x y z A z x z y z ˙ x ˙ y z B ¬ x ˙ z x ˙ z ˙ y y ˙ z ˙ x
ishlati.10 x B y B z B 0 ˙ < ˙ x x < ˙ y y < ˙ z z < ˙ 1 ˙
Assertion ishlatiN K HL

Proof

Step Hyp Ref Expression
1 ishlati.1 K OML
2 ishlati.2 K CLat
3 ishlati.3 K AtLat
4 ishlati.b B = Base K
5 ishlati.l ˙ = K
6 ishlati.s < ˙ = < K
7 ishlati.j ˙ = join K
8 ishlati.z 0 ˙ = 0. K
9 ishlati.u 1 ˙ = 1. K
10 ishlati.a A = Atoms K
11 ishlati.9 x A y A x y z A z x z y z ˙ x ˙ y z B ¬ x ˙ z x ˙ z ˙ y y ˙ z ˙ x
12 ishlati.10 x B y B z B 0 ˙ < ˙ x x < ˙ y y < ˙ z z < ˙ 1 ˙
13 1 2 3 3pm3.2i K OML K CLat K AtLat
14 11 12 pm3.2i x A y A x y z A z x z y z ˙ x ˙ y z B ¬ x ˙ z x ˙ z ˙ y y ˙ z ˙ x x B y B z B 0 ˙ < ˙ x x < ˙ y y < ˙ z z < ˙ 1 ˙
15 4 5 6 7 8 9 10 ishlat2 K HL K OML K CLat K AtLat x A y A x y z A z x z y z ˙ x ˙ y z B ¬ x ˙ z x ˙ z ˙ y y ˙ z ˙ x x B y B z B 0 ˙ < ˙ x x < ˙ y y < ˙ z z < ˙ 1 ˙
16 13 14 15 mpbir2an K HL