Metamath Proof Explorer


Theorem isi1f

Description: The predicate " F is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom F e. dom S.1 to represent this concept because S.1 is the first preparation function for our final definition S. (see df-itg ); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion isi1f F dom 1 F MblFn F : ran F Fin vol F -1 0

Proof

Step Hyp Ref Expression
1 feq1 g = F g : F :
2 rneq g = F ran g = ran F
3 2 eleq1d g = F ran g Fin ran F Fin
4 cnveq g = F g -1 = F -1
5 4 imaeq1d g = F g -1 0 = F -1 0
6 5 fveq2d g = F vol g -1 0 = vol F -1 0
7 6 eleq1d g = F vol g -1 0 vol F -1 0
8 1 3 7 3anbi123d g = F g : ran g Fin vol g -1 0 F : ran F Fin vol F -1 0
9 sumex x ran f 0 x vol f -1 x V
10 df-itg1 1 = f g MblFn | g : ran g Fin vol g -1 0 x ran f 0 x vol f -1 x
11 9 10 dmmpti dom 1 = g MblFn | g : ran g Fin vol g -1 0
12 8 11 elrab2 F dom 1 F MblFn F : ran F Fin vol F -1 0