Metamath Proof Explorer


Theorem isibl

Description: The predicate " F is integrable". The "integrable" predicate corresponds roughly to the range of validity of S. A Bd x , which is to say that the expression S. A B d x doesn't make sense unless ( x e. A |-> B ) e. L^1 . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses isibl.1 φ G = x if x A 0 T T 0
isibl.2 φ x A T = B i k
isibl.3 φ dom F = A
isibl.4 φ x A F x = B
Assertion isibl φ F 𝐿 1 F MblFn k 0 3 2 G

Proof

Step Hyp Ref Expression
1 isibl.1 φ G = x if x A 0 T T 0
2 isibl.2 φ x A T = B i k
3 isibl.3 φ dom F = A
4 isibl.4 φ x A F x = B
5 fvex f x i k V
6 breq2 y = f x i k 0 y 0 f x i k
7 6 anbi2d y = f x i k x dom f 0 y x dom f 0 f x i k
8 id y = f x i k y = f x i k
9 7 8 ifbieq1d y = f x i k if x dom f 0 y y 0 = if x dom f 0 f x i k f x i k 0
10 5 9 csbie f x i k / y if x dom f 0 y y 0 = if x dom f 0 f x i k f x i k 0
11 dmeq f = F dom f = dom F
12 11 eleq2d f = F x dom f x dom F
13 fveq1 f = F f x = F x
14 13 fvoveq1d f = F f x i k = F x i k
15 14 breq2d f = F 0 f x i k 0 F x i k
16 12 15 anbi12d f = F x dom f 0 f x i k x dom F 0 F x i k
17 16 14 ifbieq1d f = F if x dom f 0 f x i k f x i k 0 = if x dom F 0 F x i k F x i k 0
18 10 17 eqtrid f = F f x i k / y if x dom f 0 y y 0 = if x dom F 0 F x i k F x i k 0
19 18 mpteq2dv f = F x f x i k / y if x dom f 0 y y 0 = x if x dom F 0 F x i k F x i k 0
20 19 fveq2d f = F 2 x f x i k / y if x dom f 0 y y 0 = 2 x if x dom F 0 F x i k F x i k 0
21 20 eleq1d f = F 2 x f x i k / y if x dom f 0 y y 0 2 x if x dom F 0 F x i k F x i k 0
22 21 ralbidv f = F k 0 3 2 x f x i k / y if x dom f 0 y y 0 k 0 3 2 x if x dom F 0 F x i k F x i k 0
23 df-ibl 𝐿 1 = f MblFn | k 0 3 2 x f x i k / y if x dom f 0 y y 0
24 22 23 elrab2 F 𝐿 1 F MblFn k 0 3 2 x if x dom F 0 F x i k F x i k 0
25 3 eleq2d φ x dom F x A
26 25 anbi1d φ x dom F 0 F x i k x A 0 F x i k
27 26 ifbid φ if x dom F 0 F x i k F x i k 0 = if x A 0 F x i k F x i k 0
28 4 fvoveq1d φ x A F x i k = B i k
29 28 2 eqtr4d φ x A F x i k = T
30 29 ibllem φ if x A 0 F x i k F x i k 0 = if x A 0 T T 0
31 27 30 eqtrd φ if x dom F 0 F x i k F x i k 0 = if x A 0 T T 0
32 31 mpteq2dv φ x if x dom F 0 F x i k F x i k 0 = x if x A 0 T T 0
33 32 1 eqtr4d φ x if x dom F 0 F x i k F x i k 0 = G
34 33 fveq2d φ 2 x if x dom F 0 F x i k F x i k 0 = 2 G
35 34 eleq1d φ 2 x if x dom F 0 F x i k F x i k 0 2 G
36 35 ralbidv φ k 0 3 2 x if x dom F 0 F x i k F x i k 0 k 0 3 2 G
37 36 anbi2d φ F MblFn k 0 3 2 x if x dom F 0 F x i k F x i k 0 F MblFn k 0 3 2 G
38 24 37 syl5bb φ F 𝐿 1 F MblFn k 0 3 2 G