Metamath Proof Explorer


Theorem isidlc

Description: The predicate "is an ideal of the commutative ring R ". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlval.1 G = 1 st R
idlval.2 H = 2 nd R
idlval.3 X = ran G
idlval.4 Z = GId G
Assertion isidlc R CRingOps I Idl R I X Z I x I y I x G y I z X z H x I

Proof

Step Hyp Ref Expression
1 idlval.1 G = 1 st R
2 idlval.2 H = 2 nd R
3 idlval.3 X = ran G
4 idlval.4 Z = GId G
5 crngorngo R CRingOps R RingOps
6 1 2 3 4 isidl R RingOps I Idl R I X Z I x I y I x G y I z X z H x I x H z I
7 5 6 syl R CRingOps I Idl R I X Z I x I y I x G y I z X z H x I x H z I
8 ssel2 I X x I x X
9 1 2 3 crngocom R CRingOps x X z X x H z = z H x
10 9 eleq1d R CRingOps x X z X x H z I z H x I
11 10 biimprd R CRingOps x X z X z H x I x H z I
12 11 3expa R CRingOps x X z X z H x I x H z I
13 12 pm4.71d R CRingOps x X z X z H x I z H x I x H z I
14 13 bicomd R CRingOps x X z X z H x I x H z I z H x I
15 14 ralbidva R CRingOps x X z X z H x I x H z I z X z H x I
16 15 anbi2d R CRingOps x X y I x G y I z X z H x I x H z I y I x G y I z X z H x I
17 8 16 sylan2 R CRingOps I X x I y I x G y I z X z H x I x H z I y I x G y I z X z H x I
18 17 anassrs R CRingOps I X x I y I x G y I z X z H x I x H z I y I x G y I z X z H x I
19 18 ralbidva R CRingOps I X x I y I x G y I z X z H x I x H z I x I y I x G y I z X z H x I
20 19 adantrr R CRingOps I X Z I x I y I x G y I z X z H x I x H z I x I y I x G y I z X z H x I
21 20 pm5.32da R CRingOps I X Z I x I y I x G y I z X z H x I x H z I I X Z I x I y I x G y I z X z H x I
22 df-3an I X Z I x I y I x G y I z X z H x I x H z I I X Z I x I y I x G y I z X z H x I x H z I
23 df-3an I X Z I x I y I x G y I z X z H x I I X Z I x I y I x G y I z X z H x I
24 21 22 23 3bitr4g R CRingOps I X Z I x I y I x G y I z X z H x I x H z I I X Z I x I y I x G y I z X z H x I
25 7 24 bitrd R CRingOps I Idl R I X Z I x I y I x G y I z X z H x I