Metamath Proof Explorer


Theorem isinf

Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set hascountably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013)

Ref Expression
Assertion isinf ¬ A Fin n ω x x A x n

Proof

Step Hyp Ref Expression
1 breq2 n = x n x
2 1 anbi2d n = x A x n x A x
3 2 exbidv n = x x A x n x x A x
4 breq2 n = m x n x m
5 4 anbi2d n = m x A x n x A x m
6 5 exbidv n = m x x A x n x x A x m
7 sseq1 x = y x A y A
8 7 adantl n = suc m x = y x A y A
9 breq1 x = y x n y n
10 breq2 n = suc m y n y suc m
11 9 10 sylan9bbr n = suc m x = y x n y suc m
12 8 11 anbi12d n = suc m x = y x A x n y A y suc m
13 12 cbvexdvaw n = suc m x x A x n y y A y suc m
14 0ss A
15 0ex V
16 15 enref
17 sseq1 x = x A A
18 breq1 x = x
19 17 18 anbi12d x = x A x A
20 15 19 spcev A x x A x
21 14 16 20 mp2an x x A x
22 21 a1i ¬ A Fin x x A x
23 ssdif0 A x A x =
24 eqss x = A x A A x
25 breq1 x = A x m A m
26 25 biimpa x = A x m A m
27 rspe m ω A m m ω A m
28 26 27 sylan2 m ω x = A x m m ω A m
29 isfi A Fin m ω A m
30 28 29 sylibr m ω x = A x m A Fin
31 30 expcom x = A x m m ω A Fin
32 24 31 sylanbr x A A x x m m ω A Fin
33 32 ex x A A x x m m ω A Fin
34 23 33 sylan2br x A A x = x m m ω A Fin
35 34 expcom A x = x A x m m ω A Fin
36 35 3impd A x = x A x m m ω A Fin
37 36 com12 x A x m m ω A x = A Fin
38 37 con3d x A x m m ω ¬ A Fin ¬ A x =
39 bren x m f f : x 1-1 onto m
40 neq0 ¬ A x = z z A x
41 eldifi z A x z A
42 41 snssd z A x z A
43 unss x A z A x z A
44 43 biimpi x A z A x z A
45 42 44 sylan2 x A z A x x z A
46 45 ad2ant2r x A f : x 1-1 onto m z A x m ω x z A
47 vex z V
48 vex m V
49 47 48 f1osn z m : z 1-1 onto m
50 49 jctr f : x 1-1 onto m f : x 1-1 onto m z m : z 1-1 onto m
51 eldifn z A x ¬ z x
52 disjsn x z = ¬ z x
53 51 52 sylibr z A x x z =
54 nnord m ω Ord m
55 orddisj Ord m m m =
56 54 55 syl m ω m m =
57 53 56 anim12i z A x m ω x z = m m =
58 f1oun f : x 1-1 onto m z m : z 1-1 onto m x z = m m = f z m : x z 1-1 onto m m
59 50 57 58 syl2an f : x 1-1 onto m z A x m ω f z m : x z 1-1 onto m m
60 df-suc suc m = m m
61 f1oeq3 suc m = m m f z m : x z 1-1 onto suc m f z m : x z 1-1 onto m m
62 60 61 ax-mp f z m : x z 1-1 onto suc m f z m : x z 1-1 onto m m
63 vex f V
64 snex z m V
65 63 64 unex f z m V
66 f1oeq1 g = f z m g : x z 1-1 onto suc m f z m : x z 1-1 onto suc m
67 65 66 spcev f z m : x z 1-1 onto suc m g g : x z 1-1 onto suc m
68 bren x z suc m g g : x z 1-1 onto suc m
69 67 68 sylibr f z m : x z 1-1 onto suc m x z suc m
70 62 69 sylbir f z m : x z 1-1 onto m m x z suc m
71 59 70 syl f : x 1-1 onto m z A x m ω x z suc m
72 71 adantll x A f : x 1-1 onto m z A x m ω x z suc m
73 vex x V
74 snex z V
75 73 74 unex x z V
76 sseq1 y = x z y A x z A
77 breq1 y = x z y suc m x z suc m
78 76 77 anbi12d y = x z y A y suc m x z A x z suc m
79 75 78 spcev x z A x z suc m y y A y suc m
80 46 72 79 syl2anc x A f : x 1-1 onto m z A x m ω y y A y suc m
81 80 expcom z A x m ω x A f : x 1-1 onto m y y A y suc m
82 81 ex z A x m ω x A f : x 1-1 onto m y y A y suc m
83 82 exlimiv z z A x m ω x A f : x 1-1 onto m y y A y suc m
84 40 83 sylbi ¬ A x = m ω x A f : x 1-1 onto m y y A y suc m
85 84 com13 x A f : x 1-1 onto m m ω ¬ A x = y y A y suc m
86 85 expcom f : x 1-1 onto m x A m ω ¬ A x = y y A y suc m
87 86 exlimiv f f : x 1-1 onto m x A m ω ¬ A x = y y A y suc m
88 39 87 sylbi x m x A m ω ¬ A x = y y A y suc m
89 88 3imp21 x A x m m ω ¬ A x = y y A y suc m
90 38 89 syld x A x m m ω ¬ A Fin y y A y suc m
91 90 3expia x A x m m ω ¬ A Fin y y A y suc m
92 91 exlimiv x x A x m m ω ¬ A Fin y y A y suc m
93 92 com3l m ω ¬ A Fin x x A x m y y A y suc m
94 3 6 13 22 93 finds2 n ω ¬ A Fin x x A x n
95 94 com12 ¬ A Fin n ω x x A x n
96 95 ralrimiv ¬ A Fin n ω x x A x n