Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|
2 |
1
|
anbi2d |
|
3 |
2
|
exbidv |
|
4 |
|
breq2 |
|
5 |
4
|
anbi2d |
|
6 |
5
|
exbidv |
|
7 |
|
sseq1 |
|
8 |
7
|
adantl |
|
9 |
|
breq1 |
|
10 |
|
breq2 |
|
11 |
9 10
|
sylan9bbr |
|
12 |
8 11
|
anbi12d |
|
13 |
12
|
cbvexdvaw |
|
14 |
|
0ss |
|
15 |
|
peano1 |
|
16 |
|
enrefnn |
|
17 |
15 16
|
ax-mp |
|
18 |
|
0ex |
|
19 |
|
sseq1 |
|
20 |
|
breq1 |
|
21 |
19 20
|
anbi12d |
|
22 |
18 21
|
spcev |
|
23 |
14 17 22
|
mp2an |
|
24 |
23
|
a1i |
|
25 |
|
ssdif0 |
|
26 |
|
eqss |
|
27 |
|
breq1 |
|
28 |
27
|
biimpa |
|
29 |
|
rspe |
|
30 |
28 29
|
sylan2 |
|
31 |
|
isfi |
|
32 |
30 31
|
sylibr |
|
33 |
32
|
expcom |
|
34 |
26 33
|
sylanbr |
|
35 |
34
|
ex |
|
36 |
25 35
|
sylan2br |
|
37 |
36
|
expcom |
|
38 |
37
|
3impd |
|
39 |
38
|
com12 |
|
40 |
39
|
con3d |
|
41 |
|
bren |
|
42 |
|
neq0 |
|
43 |
|
eldifi |
|
44 |
43
|
snssd |
|
45 |
|
unss |
|
46 |
45
|
biimpi |
|
47 |
44 46
|
sylan2 |
|
48 |
47
|
ad2ant2r |
|
49 |
|
vex |
|
50 |
|
vex |
|
51 |
49 50
|
f1osn |
|
52 |
51
|
jctr |
|
53 |
|
eldifn |
|
54 |
|
disjsn |
|
55 |
53 54
|
sylibr |
|
56 |
|
nnord |
|
57 |
|
orddisj |
|
58 |
56 57
|
syl |
|
59 |
55 58
|
anim12i |
|
60 |
|
f1oun |
|
61 |
52 59 60
|
syl2an |
|
62 |
|
df-suc |
|
63 |
|
f1oeq3 |
|
64 |
62 63
|
ax-mp |
|
65 |
|
vex |
|
66 |
|
snex |
|
67 |
65 66
|
unex |
|
68 |
|
f1oeq1 |
|
69 |
67 68
|
spcev |
|
70 |
|
bren |
|
71 |
69 70
|
sylibr |
|
72 |
64 71
|
sylbir |
|
73 |
61 72
|
syl |
|
74 |
73
|
adantll |
|
75 |
|
vex |
|
76 |
|
snex |
|
77 |
75 76
|
unex |
|
78 |
|
sseq1 |
|
79 |
|
breq1 |
|
80 |
78 79
|
anbi12d |
|
81 |
77 80
|
spcev |
|
82 |
48 74 81
|
syl2anc |
|
83 |
82
|
expcom |
|
84 |
83
|
ex |
|
85 |
84
|
exlimiv |
|
86 |
42 85
|
sylbi |
|
87 |
86
|
com13 |
|
88 |
87
|
expcom |
|
89 |
88
|
exlimiv |
|
90 |
41 89
|
sylbi |
|
91 |
90
|
3imp21 |
|
92 |
40 91
|
syld |
|
93 |
92
|
3expia |
|
94 |
93
|
exlimiv |
|
95 |
94
|
com3l |
|
96 |
3 6 13 24 95
|
finds2 |
|
97 |
96
|
com12 |
|
98 |
97
|
ralrimiv |
|