Metamath Proof Explorer


Theorem isinffi

Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion isinffi ¬ A Fin B Fin f f : B 1-1 A

Proof

Step Hyp Ref Expression
1 ficardom B Fin card B ω
2 isinf ¬ A Fin a ω c c A c a
3 breq2 a = card B c a c card B
4 3 anbi2d a = card B c A c a c A c card B
5 4 exbidv a = card B c c A c a c c A c card B
6 5 rspcva card B ω a ω c c A c a c c A c card B
7 1 2 6 syl2anr ¬ A Fin B Fin c c A c card B
8 simprr ¬ A Fin B Fin c A c card B c card B
9 ficardid B Fin card B B
10 9 ad2antlr ¬ A Fin B Fin c A c card B card B B
11 entr c card B card B B c B
12 8 10 11 syl2anc ¬ A Fin B Fin c A c card B c B
13 12 ensymd ¬ A Fin B Fin c A c card B B c
14 bren B c f f : B 1-1 onto c
15 13 14 sylib ¬ A Fin B Fin c A c card B f f : B 1-1 onto c
16 f1of1 f : B 1-1 onto c f : B 1-1 c
17 simplrl ¬ A Fin B Fin c A c card B f : B 1-1 onto c c A
18 f1ss f : B 1-1 c c A f : B 1-1 A
19 16 17 18 syl2an2 ¬ A Fin B Fin c A c card B f : B 1-1 onto c f : B 1-1 A
20 19 ex ¬ A Fin B Fin c A c card B f : B 1-1 onto c f : B 1-1 A
21 20 eximdv ¬ A Fin B Fin c A c card B f f : B 1-1 onto c f f : B 1-1 A
22 15 21 mpd ¬ A Fin B Fin c A c card B f f : B 1-1 A
23 7 22 exlimddv ¬ A Fin B Fin f f : B 1-1 A