Step |
Hyp |
Ref |
Expression |
1 |
|
irred.1 |
|
2 |
|
irred.2 |
|
3 |
|
irred.3 |
|
4 |
|
irred.4 |
|
5 |
|
irred.5 |
|
6 |
|
elfvdm |
|
7 |
6 3
|
eleq2s |
|
8 |
7
|
elexd |
|
9 |
|
eldifi |
|
10 |
9 4
|
eleq2s |
|
11 |
10 1
|
eleqtrdi |
|
12 |
11
|
elfvexd |
|
13 |
12
|
adantr |
|
14 |
|
fvex |
|
15 |
|
difexg |
|
16 |
14 15
|
mp1i |
|
17 |
|
simpr |
|
18 |
|
simpl |
|
19 |
18
|
fveq2d |
|
20 |
19 1
|
eqtr4di |
|
21 |
18
|
fveq2d |
|
22 |
21 2
|
eqtr4di |
|
23 |
20 22
|
difeq12d |
|
24 |
23 4
|
eqtr4di |
|
25 |
17 24
|
eqtrd |
|
26 |
18
|
fveq2d |
|
27 |
26 5
|
eqtr4di |
|
28 |
27
|
oveqd |
|
29 |
28
|
neeq1d |
|
30 |
25 29
|
raleqbidv |
|
31 |
25 30
|
raleqbidv |
|
32 |
25 31
|
rabeqbidv |
|
33 |
16 32
|
csbied |
|
34 |
|
df-irred |
|
35 |
|
fvex |
|
36 |
1 35
|
eqeltri |
|
37 |
36
|
difexi |
|
38 |
4 37
|
eqeltri |
|
39 |
38
|
rabex |
|
40 |
33 34 39
|
fvmpt |
|
41 |
3 40
|
eqtrid |
|
42 |
41
|
eleq2d |
|
43 |
|
neeq2 |
|
44 |
43
|
2ralbidv |
|
45 |
44
|
elrab |
|
46 |
42 45
|
bitrdi |
|
47 |
8 13 46
|
pm5.21nii |
|