Step |
Hyp |
Ref |
Expression |
1 |
|
isismt.b |
|
2 |
|
isismt.p |
|
3 |
|
isismt.d |
|
4 |
|
isismt.m |
|
5 |
|
elex |
|
6 |
|
elex |
|
7 |
|
fveq2 |
|
8 |
7 1
|
eqtr4di |
|
9 |
8
|
f1oeq2d |
|
10 |
|
fveq2 |
|
11 |
10 3
|
eqtr4di |
|
12 |
11
|
oveqd |
|
13 |
12
|
eqeq2d |
|
14 |
8 13
|
raleqbidv |
|
15 |
8 14
|
raleqbidv |
|
16 |
9 15
|
anbi12d |
|
17 |
16
|
abbidv |
|
18 |
|
fveq2 |
|
19 |
18 2
|
eqtr4di |
|
20 |
19
|
f1oeq3d |
|
21 |
|
fveq2 |
|
22 |
21 4
|
eqtr4di |
|
23 |
22
|
oveqd |
|
24 |
23
|
eqeq1d |
|
25 |
24
|
2ralbidv |
|
26 |
20 25
|
anbi12d |
|
27 |
26
|
abbidv |
|
28 |
|
df-ismt |
|
29 |
|
ovex |
|
30 |
|
f1of |
|
31 |
2
|
fvexi |
|
32 |
1
|
fvexi |
|
33 |
31 32
|
elmap |
|
34 |
30 33
|
sylibr |
|
35 |
34
|
adantr |
|
36 |
35
|
abssi |
|
37 |
29 36
|
ssexi |
|
38 |
17 27 28 37
|
ovmpo |
|
39 |
5 6 38
|
syl2an |
|
40 |
39
|
eleq2d |
|
41 |
|
f1of |
|
42 |
|
fex |
|
43 |
41 32 42
|
sylancl |
|
44 |
43
|
adantr |
|
45 |
|
f1oeq1 |
|
46 |
|
fveq1 |
|
47 |
|
fveq1 |
|
48 |
46 47
|
oveq12d |
|
49 |
48
|
eqeq1d |
|
50 |
49
|
2ralbidv |
|
51 |
45 50
|
anbi12d |
|
52 |
44 51
|
elab3 |
|
53 |
40 52
|
bitrdi |
|