Metamath Proof Explorer


Theorem isismt

Description: Property of being an isometry. Compare with isismty . (Contributed by Thierry Arnoux, 13-Dec-2019)

Ref Expression
Hypotheses isismt.b B = Base G
isismt.p P = Base H
isismt.d D = dist G
isismt.m - ˙ = dist H
Assertion isismt G V H W F G Ismt H F : B 1-1 onto P a B b B F a - ˙ F b = a D b

Proof

Step Hyp Ref Expression
1 isismt.b B = Base G
2 isismt.p P = Base H
3 isismt.d D = dist G
4 isismt.m - ˙ = dist H
5 elex G V G V
6 elex H W H V
7 fveq2 g = G Base g = Base G
8 7 1 eqtr4di g = G Base g = B
9 8 f1oeq2d g = G f : Base g 1-1 onto Base h f : B 1-1 onto Base h
10 fveq2 g = G dist g = dist G
11 10 3 eqtr4di g = G dist g = D
12 11 oveqd g = G a dist g b = a D b
13 12 eqeq2d g = G f a dist h f b = a dist g b f a dist h f b = a D b
14 8 13 raleqbidv g = G b Base g f a dist h f b = a dist g b b B f a dist h f b = a D b
15 8 14 raleqbidv g = G a Base g b Base g f a dist h f b = a dist g b a B b B f a dist h f b = a D b
16 9 15 anbi12d g = G f : Base g 1-1 onto Base h a Base g b Base g f a dist h f b = a dist g b f : B 1-1 onto Base h a B b B f a dist h f b = a D b
17 16 abbidv g = G f | f : Base g 1-1 onto Base h a Base g b Base g f a dist h f b = a dist g b = f | f : B 1-1 onto Base h a B b B f a dist h f b = a D b
18 fveq2 h = H Base h = Base H
19 18 2 eqtr4di h = H Base h = P
20 19 f1oeq3d h = H f : B 1-1 onto Base h f : B 1-1 onto P
21 fveq2 h = H dist h = dist H
22 21 4 eqtr4di h = H dist h = - ˙
23 22 oveqd h = H f a dist h f b = f a - ˙ f b
24 23 eqeq1d h = H f a dist h f b = a D b f a - ˙ f b = a D b
25 24 2ralbidv h = H a B b B f a dist h f b = a D b a B b B f a - ˙ f b = a D b
26 20 25 anbi12d h = H f : B 1-1 onto Base h a B b B f a dist h f b = a D b f : B 1-1 onto P a B b B f a - ˙ f b = a D b
27 26 abbidv h = H f | f : B 1-1 onto Base h a B b B f a dist h f b = a D b = f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b
28 df-ismt Ismt = g V , h V f | f : Base g 1-1 onto Base h a Base g b Base g f a dist h f b = a dist g b
29 ovex P B V
30 f1of f : B 1-1 onto P f : B P
31 2 fvexi P V
32 1 fvexi B V
33 31 32 elmap f P B f : B P
34 30 33 sylibr f : B 1-1 onto P f P B
35 34 adantr f : B 1-1 onto P a B b B f a - ˙ f b = a D b f P B
36 35 abssi f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b P B
37 29 36 ssexi f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b V
38 17 27 28 37 ovmpo G V H V G Ismt H = f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b
39 5 6 38 syl2an G V H W G Ismt H = f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b
40 39 eleq2d G V H W F G Ismt H F f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b
41 f1of F : B 1-1 onto P F : B P
42 fex F : B P B V F V
43 41 32 42 sylancl F : B 1-1 onto P F V
44 43 adantr F : B 1-1 onto P a B b B F a - ˙ F b = a D b F V
45 f1oeq1 f = F f : B 1-1 onto P F : B 1-1 onto P
46 fveq1 f = F f a = F a
47 fveq1 f = F f b = F b
48 46 47 oveq12d f = F f a - ˙ f b = F a - ˙ F b
49 48 eqeq1d f = F f a - ˙ f b = a D b F a - ˙ F b = a D b
50 49 2ralbidv f = F a B b B f a - ˙ f b = a D b a B b B F a - ˙ F b = a D b
51 45 50 anbi12d f = F f : B 1-1 onto P a B b B f a - ˙ f b = a D b F : B 1-1 onto P a B b B F a - ˙ F b = a D b
52 44 51 elab3 F f | f : B 1-1 onto P a B b B f a - ˙ f b = a D b F : B 1-1 onto P a B b B F a - ˙ F b = a D b
53 40 52 bitrdi G V H W F G Ismt H F : B 1-1 onto P a B b B F a - ˙ F b = a D b