Metamath Proof Explorer


Theorem iskgen2

Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion iskgen2 J ran 𝑘Gen J Top 𝑘Gen J J

Proof

Step Hyp Ref Expression
1 kgentop J ran 𝑘Gen J Top
2 kgenidm J ran 𝑘Gen 𝑘Gen J = J
3 eqimss 𝑘Gen J = J 𝑘Gen J J
4 2 3 syl J ran 𝑘Gen 𝑘Gen J J
5 1 4 jca J ran 𝑘Gen J Top 𝑘Gen J J
6 simpr J Top 𝑘Gen J J 𝑘Gen J J
7 kgenss J Top J 𝑘Gen J
8 7 adantr J Top 𝑘Gen J J J 𝑘Gen J
9 6 8 eqssd J Top 𝑘Gen J J 𝑘Gen J = J
10 kgenf 𝑘Gen : Top Top
11 ffn 𝑘Gen : Top Top 𝑘Gen Fn Top
12 10 11 ax-mp 𝑘Gen Fn Top
13 fnfvelrn 𝑘Gen Fn Top J Top 𝑘Gen J ran 𝑘Gen
14 12 13 mpan J Top 𝑘Gen J ran 𝑘Gen
15 14 adantr J Top 𝑘Gen J J 𝑘Gen J ran 𝑘Gen
16 9 15 eqeltrrd J Top 𝑘Gen J J J ran 𝑘Gen
17 5 16 impbii J ran 𝑘Gen J Top 𝑘Gen J J