Metamath Proof Explorer


Theorem islat

Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses islat.b B = Base K
islat.j ˙ = join K
islat.m ˙ = meet K
Assertion islat K Lat K Poset dom ˙ = B × B dom ˙ = B × B

Proof

Step Hyp Ref Expression
1 islat.b B = Base K
2 islat.j ˙ = join K
3 islat.m ˙ = meet K
4 fveq2 l = K join l = join K
5 4 2 eqtr4di l = K join l = ˙
6 5 dmeqd l = K dom join l = dom ˙
7 fveq2 l = K Base l = Base K
8 7 1 eqtr4di l = K Base l = B
9 8 sqxpeqd l = K Base l × Base l = B × B
10 6 9 eqeq12d l = K dom join l = Base l × Base l dom ˙ = B × B
11 fveq2 l = K meet l = meet K
12 11 3 eqtr4di l = K meet l = ˙
13 12 dmeqd l = K dom meet l = dom ˙
14 13 9 eqeq12d l = K dom meet l = Base l × Base l dom ˙ = B × B
15 10 14 anbi12d l = K dom join l = Base l × Base l dom meet l = Base l × Base l dom ˙ = B × B dom ˙ = B × B
16 df-lat Lat = l Poset | dom join l = Base l × Base l dom meet l = Base l × Base l
17 15 16 elrab2 K Lat K Poset dom ˙ = B × B dom ˙ = B × B