Step |
Hyp |
Ref |
Expression |
1 |
|
islbs2.v |
|
2 |
|
islbs2.j |
|
3 |
|
islbs2.n |
|
4 |
1 2
|
lbsss |
|
5 |
4
|
adantl |
|
6 |
1 2 3
|
lbssp |
|
7 |
6
|
adantl |
|
8 |
|
lveclmod |
|
9 |
|
eqid |
|
10 |
9
|
lvecdrng |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
11 12
|
drngunz |
|
14 |
10 13
|
syl |
|
15 |
8 14
|
jca |
|
16 |
2 3 9 12 11
|
lbsind2 |
|
17 |
15 16
|
syl3an1 |
|
18 |
17
|
3expa |
|
19 |
18
|
ralrimiva |
|
20 |
5 7 19
|
3jca |
|
21 |
|
simpr1 |
|
22 |
|
simpr2 |
|
23 |
|
id |
|
24 |
|
sneq |
|
25 |
24
|
difeq2d |
|
26 |
25
|
fveq2d |
|
27 |
23 26
|
eleq12d |
|
28 |
27
|
notbid |
|
29 |
|
simplr3 |
|
30 |
|
simprl |
|
31 |
28 29 30
|
rspcdva |
|
32 |
|
simpll |
|
33 |
|
simprr |
|
34 |
|
eldifsn |
|
35 |
33 34
|
sylib |
|
36 |
21
|
adantr |
|
37 |
36 30
|
sseldd |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
1 9 38 39 11 3
|
lspsnvs |
|
41 |
32 35 37 40
|
syl3anc |
|
42 |
41
|
sseq1d |
|
43 |
|
eqid |
|
44 |
8
|
adantr |
|
45 |
44
|
adantr |
|
46 |
36
|
ssdifssd |
|
47 |
1 43 3
|
lspcl |
|
48 |
45 46 47
|
syl2anc |
|
49 |
35
|
simpld |
|
50 |
1 9 38 39
|
lmodvscl |
|
51 |
45 49 37 50
|
syl3anc |
|
52 |
1 43 3 45 48 51
|
lspsnel5 |
|
53 |
1 43 3 45 48 37
|
lspsnel5 |
|
54 |
42 52 53
|
3bitr4d |
|
55 |
31 54
|
mtbird |
|
56 |
55
|
ralrimivva |
|
57 |
1 9 38 39 2 3 11
|
islbs |
|
58 |
57
|
adantr |
|
59 |
21 22 56 58
|
mpbir3and |
|
60 |
20 59
|
impbida |
|