Step |
Hyp |
Ref |
Expression |
1 |
|
islbs2.v |
|
2 |
|
islbs2.j |
|
3 |
|
islbs2.n |
|
4 |
1 2
|
lbsss |
|
5 |
4
|
adantl |
|
6 |
1 2 3
|
lbssp |
|
7 |
6
|
adantl |
|
8 |
|
lveclmod |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
pssss |
|
11 |
10 4
|
sylan9ssr |
|
12 |
11
|
3adant1 |
|
13 |
1 3
|
lspssv |
|
14 |
9 12 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
15
|
lvecdrng |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
17 18
|
drngunz |
|
20 |
16 19
|
syl |
|
21 |
8 20
|
jca |
|
22 |
2 3 15 18 17 1
|
lbspss |
|
23 |
21 22
|
syl3an1 |
|
24 |
|
df-pss |
|
25 |
14 23 24
|
sylanbrc |
|
26 |
25
|
3expia |
|
27 |
26
|
alrimiv |
|
28 |
5 7 27
|
3jca |
|
29 |
|
simpr1 |
|
30 |
|
simpr2 |
|
31 |
|
simplr1 |
|
32 |
31
|
ssdifssd |
|
33 |
1
|
fvexi |
|
34 |
|
ssexg |
|
35 |
32 33 34
|
sylancl |
|
36 |
|
simplr3 |
|
37 |
|
difssd |
|
38 |
|
simpr |
|
39 |
|
neldifsn |
|
40 |
|
nelne1 |
|
41 |
38 39 40
|
sylancl |
|
42 |
41
|
necomd |
|
43 |
|
df-pss |
|
44 |
37 42 43
|
sylanbrc |
|
45 |
|
psseq1 |
|
46 |
|
fveq2 |
|
47 |
46
|
psseq1d |
|
48 |
45 47
|
imbi12d |
|
49 |
48
|
spcgv |
|
50 |
35 36 44 49
|
syl3c |
|
51 |
|
dfpss3 |
|
52 |
51
|
simprbi |
|
53 |
50 52
|
syl |
|
54 |
|
simplr2 |
|
55 |
8
|
ad2antrr |
|
56 |
32
|
adantrr |
|
57 |
|
eqid |
|
58 |
1 57 3
|
lspcl |
|
59 |
55 56 58
|
syl2anc |
|
60 |
|
ssun1 |
|
61 |
|
undif1 |
|
62 |
60 61
|
sseqtrri |
|
63 |
1 3
|
lspssid |
|
64 |
55 56 63
|
syl2anc |
|
65 |
|
simprr |
|
66 |
65
|
snssd |
|
67 |
64 66
|
unssd |
|
68 |
62 67
|
sstrid |
|
69 |
57 3
|
lspssp |
|
70 |
55 59 68 69
|
syl3anc |
|
71 |
54 70
|
eqsstrrd |
|
72 |
71
|
expr |
|
73 |
53 72
|
mtod |
|
74 |
73
|
ralrimiva |
|
75 |
1 2 3
|
islbs2 |
|
76 |
75
|
adantr |
|
77 |
29 30 74 76
|
mpbir3and |
|
78 |
28 77
|
impbida |
|