Metamath Proof Explorer


Theorem islbs5

Description: An equivalent formulation of the basis predicate in a vector space, using a function F for generating the base. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses islbs5.b B = Base W
islbs5.k K = Base S
islbs5.r S = Scalar W
islbs5.t · ˙ = W
islbs5.z O = 0 W
islbs5.y 0 ˙ = 0 S
islbs5.j J = LBasis W
islbs5.n N = LSpan W
islbs5.w φ W LMod
islbs5.s φ S NzRing
islbs5.i φ I V
islbs5.f φ F : I 1-1 B
Assertion islbs5 φ ran F LBasis W a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ N ran F = B

Proof

Step Hyp Ref Expression
1 islbs5.b B = Base W
2 islbs5.k K = Base S
3 islbs5.r S = Scalar W
4 islbs5.t · ˙ = W
5 islbs5.z O = 0 W
6 islbs5.y 0 ˙ = 0 S
7 islbs5.j J = LBasis W
8 islbs5.n N = LSpan W
9 islbs5.w φ W LMod
10 islbs5.s φ S NzRing
11 islbs5.i φ I V
12 islbs5.f φ F : I 1-1 B
13 eqid Base F = Base F
14 1 13 3 4 5 6 8 9 10 11 12 lindflbs φ ran F LBasis W F LIndF W N ran F = B
15 f1f F : I 1-1 B F : I B
16 12 15 syl φ F : I B
17 eqid Base S freeLMod I = Base S freeLMod I
18 1 3 4 5 6 17 islindf4 W LMod I V F : I B F LIndF W a Base S freeLMod I W a · ˙ f F = O a = I × 0 ˙
19 9 11 16 18 syl3anc φ F LIndF W a Base S freeLMod I W a · ˙ f F = O a = I × 0 ˙
20 10 elexd φ S V
21 eqid S freeLMod I = S freeLMod I
22 21 2 6 17 frlmelbas S V I V a Base S freeLMod I a K I finSupp 0 ˙ a
23 20 11 22 syl2anc φ a Base S freeLMod I a K I finSupp 0 ˙ a
24 23 imbi1d φ a Base S freeLMod I W a · ˙ f F = O a = I × 0 ˙ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
25 impexp a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
26 impexp finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
27 26 a1i φ finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
28 27 bicomd φ finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
29 28 imbi2d φ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
30 25 29 bitrid φ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
31 24 30 bitrd φ a Base S freeLMod I W a · ˙ f F = O a = I × 0 ˙ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
32 31 ralbidv2 φ a Base S freeLMod I W a · ˙ f F = O a = I × 0 ˙ a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
33 19 32 bitrd φ F LIndF W a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙
34 33 anbi1d φ F LIndF W N ran F = B a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ N ran F = B
35 14 34 bitrd φ ran F LBasis W a K I finSupp 0 ˙ a W a · ˙ f F = O a = I × 0 ˙ N ran F = B