Metamath Proof Explorer


Theorem isldil

Description: The predicate "is a lattice dilation". Similar to definition of dilation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ldilset.b B = Base K
ldilset.l ˙ = K
ldilset.h H = LHyp K
ldilset.i I = LAut K
ldilset.d D = LDil K W
Assertion isldil K C W H F D F I x B x ˙ W F x = x

Proof

Step Hyp Ref Expression
1 ldilset.b B = Base K
2 ldilset.l ˙ = K
3 ldilset.h H = LHyp K
4 ldilset.i I = LAut K
5 ldilset.d D = LDil K W
6 1 2 3 4 5 ldilset K C W H D = f I | x B x ˙ W f x = x
7 6 eleq2d K C W H F D F f I | x B x ˙ W f x = x
8 fveq1 f = F f x = F x
9 8 eqeq1d f = F f x = x F x = x
10 9 imbi2d f = F x ˙ W f x = x x ˙ W F x = x
11 10 ralbidv f = F x B x ˙ W f x = x x B x ˙ W F x = x
12 11 elrab F f I | x B x ˙ W f x = x F I x B x ˙ W F x = x
13 7 12 bitrdi K C W H F D F I x B x ˙ W F x = x