Metamath Proof Explorer


Theorem islhp

Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lhpset.b B = Base K
lhpset.u 1 ˙ = 1. K
lhpset.c C = K
lhpset.h H = LHyp K
Assertion islhp K A W H W B W C 1 ˙

Proof

Step Hyp Ref Expression
1 lhpset.b B = Base K
2 lhpset.u 1 ˙ = 1. K
3 lhpset.c C = K
4 lhpset.h H = LHyp K
5 1 2 3 4 lhpset K A H = w B | w C 1 ˙
6 5 eleq2d K A W H W w B | w C 1 ˙
7 breq1 w = W w C 1 ˙ W C 1 ˙
8 7 elrab W w B | w C 1 ˙ W B W C 1 ˙
9 6 8 bitrdi K A W H W B W C 1 ˙