Metamath Proof Explorer


Theorem islhp2

Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpset.b B = Base K
lhpset.u 1 ˙ = 1. K
lhpset.c C = K
lhpset.h H = LHyp K
Assertion islhp2 K A W B W H W C 1 ˙

Proof

Step Hyp Ref Expression
1 lhpset.b B = Base K
2 lhpset.u 1 ˙ = 1. K
3 lhpset.c C = K
4 lhpset.h H = LHyp K
5 1 2 3 4 islhp K A W H W B W C 1 ˙
6 5 baibd K A W B W H W C 1 ˙