Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
islidl
Next ⟩
lidl0cl
Metamath Proof Explorer
Ascii
Unicode
Theorem
islidl
Description:
Predicate of being a (left) ideal.
(Contributed by
Stefan O'Rear
, 1-Apr-2015)
Ref
Expression
Hypotheses
islidl.s
⊢
U
=
LIdeal
⁡
R
islidl.b
⊢
B
=
Base
R
islidl.p
⊢
+
˙
=
+
R
islidl.t
⊢
·
˙
=
⋅
R
Assertion
islidl
⊢
I
∈
U
↔
I
⊆
B
∧
I
≠
∅
∧
∀
x
∈
B
∀
a
∈
I
∀
b
∈
I
x
·
˙
a
+
˙
b
∈
I
Proof
Step
Hyp
Ref
Expression
1
islidl.s
⊢
U
=
LIdeal
⁡
R
2
islidl.b
⊢
B
=
Base
R
3
islidl.p
⊢
+
˙
=
+
R
4
islidl.t
⊢
·
˙
=
⋅
R
5
rlmsca2
⊢
I
⁡
R
=
Scalar
⁡
ringLMod
⁡
R
6
baseid
⊢
Base
=
Slot
Base
ndx
7
6
2
strfvi
⊢
B
=
Base
I
⁡
R
8
rlmbas
⊢
Base
R
=
Base
ringLMod
⁡
R
9
2
8
eqtri
⊢
B
=
Base
ringLMod
⁡
R
10
rlmplusg
⊢
+
R
=
+
ringLMod
⁡
R
11
3
10
eqtri
⊢
+
˙
=
+
ringLMod
⁡
R
12
rlmvsca
⊢
⋅
R
=
⋅
ringLMod
⁡
R
13
4
12
eqtri
⊢
·
˙
=
⋅
ringLMod
⁡
R
14
lidlval
⊢
LIdeal
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
15
1
14
eqtri
⊢
U
=
LSubSp
⁡
ringLMod
⁡
R
16
5
7
9
11
13
15
islss
⊢
I
∈
U
↔
I
⊆
B
∧
I
≠
∅
∧
∀
x
∈
B
∀
a
∈
I
∀
b
∈
I
x
·
˙
a
+
˙
b
∈
I