Metamath Proof Explorer


Theorem islinds2

Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses islindf.b B = Base W
islindf.v · ˙ = W
islindf.k K = LSpan W
islindf.s S = Scalar W
islindf.n N = Base S
islindf.z 0 ˙ = 0 S
Assertion islinds2 W Y F LIndS W F B x F k N 0 ˙ ¬ k · ˙ x K F x

Proof

Step Hyp Ref Expression
1 islindf.b B = Base W
2 islindf.v · ˙ = W
3 islindf.k K = LSpan W
4 islindf.s S = Scalar W
5 islindf.n N = Base S
6 islindf.z 0 ˙ = 0 S
7 1 islinds W Y F LIndS W F B I F LIndF W
8 1 fvexi B V
9 8 ssex F B F V
10 9 adantl W Y F B F V
11 resiexg F V I F V
12 10 11 syl W Y F B I F V
13 1 2 3 4 5 6 islindf W Y I F V I F LIndF W I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
14 12 13 syldan W Y F B I F LIndF W I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
15 14 pm5.32da W Y F B I F LIndF W F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
16 f1oi I F : F 1-1 onto F
17 f1of I F : F 1-1 onto F I F : F F
18 16 17 ax-mp I F : F F
19 dmresi dom I F = F
20 19 feq2i I F : dom I F F I F : F F
21 18 20 mpbir I F : dom I F F
22 fss I F : dom I F F F B I F : dom I F B
23 21 22 mpan F B I F : dom I F B
24 23 biantrurd F B x F k N 0 ˙ ¬ k · ˙ x K F x I F : dom I F B x F k N 0 ˙ ¬ k · ˙ x K F x
25 19 raleqi x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
26 fvresi x F I F x = x
27 26 oveq2d x F k · ˙ I F x = k · ˙ x
28 19 difeq1i dom I F x = F x
29 28 imaeq2i I F dom I F x = I F F x
30 difss F x F
31 resiima F x F I F F x = F x
32 30 31 ax-mp I F F x = F x
33 29 32 eqtri I F dom I F x = F x
34 33 fveq2i K I F dom I F x = K F x
35 34 a1i x F K I F dom I F x = K F x
36 27 35 eleq12d x F k · ˙ I F x K I F dom I F x k · ˙ x K F x
37 36 notbid x F ¬ k · ˙ I F x K I F dom I F x ¬ k · ˙ x K F x
38 37 ralbidv x F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x k N 0 ˙ ¬ k · ˙ x K F x
39 38 ralbiia x F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ x K F x
40 25 39 bitri x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ x K F x
41 40 anbi2i I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x I F : dom I F B x F k N 0 ˙ ¬ k · ˙ x K F x
42 24 41 syl6rbbr F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ x K F x
43 42 pm5.32i F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x F B x F k N 0 ˙ ¬ k · ˙ x K F x
44 43 a1i W Y F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x F B x F k N 0 ˙ ¬ k · ˙ x K F x
45 7 15 44 3bitrd W Y F LIndS W F B x F k N 0 ˙ ¬ k · ˙ x K F x