Metamath Proof Explorer


Theorem isline2

Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses isline2.j ˙ = join K
isline2.a A = Atoms K
isline2.n N = Lines K
isline2.m M = pmap K
Assertion isline2 K Lat X N p A q A p q X = M p ˙ q

Proof

Step Hyp Ref Expression
1 isline2.j ˙ = join K
2 isline2.a A = Atoms K
3 isline2.n N = Lines K
4 isline2.m M = pmap K
5 eqid K = K
6 5 1 2 3 isline K Lat X N p A q A p q X = r A | r K p ˙ q
7 simpl K Lat p A q A K Lat
8 eqid Base K = Base K
9 8 2 atbase p A p Base K
10 9 ad2antrl K Lat p A q A p Base K
11 8 2 atbase q A q Base K
12 11 ad2antll K Lat p A q A q Base K
13 8 1 latjcl K Lat p Base K q Base K p ˙ q Base K
14 7 10 12 13 syl3anc K Lat p A q A p ˙ q Base K
15 8 5 2 4 pmapval K Lat p ˙ q Base K M p ˙ q = r A | r K p ˙ q
16 14 15 syldan K Lat p A q A M p ˙ q = r A | r K p ˙ q
17 16 eqeq2d K Lat p A q A X = M p ˙ q X = r A | r K p ˙ q
18 17 anbi2d K Lat p A q A p q X = M p ˙ q p q X = r A | r K p ˙ q
19 18 2rexbidva K Lat p A q A p q X = M p ˙ q p A q A p q X = r A | r K p ˙ q
20 6 19 bitr4d K Lat X N p A q A p q X = M p ˙ q