Metamath Proof Explorer


Theorem isline3

Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012)

Ref Expression
Hypotheses isline3.b B = Base K
isline3.j ˙ = join K
isline3.a A = Atoms K
isline3.n N = Lines K
isline3.m M = pmap K
Assertion isline3 K HL X B M X N p A q A p q X = p ˙ q

Proof

Step Hyp Ref Expression
1 isline3.b B = Base K
2 isline3.j ˙ = join K
3 isline3.a A = Atoms K
4 isline3.n N = Lines K
5 isline3.m M = pmap K
6 hllat K HL K Lat
7 6 adantr K HL X B K Lat
8 2 3 4 5 isline2 K Lat M X N p A q A p q M X = M p ˙ q
9 7 8 syl K HL X B M X N p A q A p q M X = M p ˙ q
10 simpll K HL X B p A q A K HL
11 simplr K HL X B p A q A X B
12 6 ad2antrr K HL X B p A q A K Lat
13 1 3 atbase p A p B
14 13 ad2antrl K HL X B p A q A p B
15 1 3 atbase q A q B
16 15 ad2antll K HL X B p A q A q B
17 1 2 latjcl K Lat p B q B p ˙ q B
18 12 14 16 17 syl3anc K HL X B p A q A p ˙ q B
19 1 5 pmap11 K HL X B p ˙ q B M X = M p ˙ q X = p ˙ q
20 10 11 18 19 syl3anc K HL X B p A q A M X = M p ˙ q X = p ˙ q
21 20 anbi2d K HL X B p A q A p q M X = M p ˙ q p q X = p ˙ q
22 21 2rexbidva K HL X B p A q A p q M X = M p ˙ q p A q A p q X = p ˙ q
23 9 22 bitrd K HL X B M X N p A q A p q X = p ˙ q