Metamath Proof Explorer


Theorem islinei

Description: Condition implying "is a line". (Contributed by NM, 3-Feb-2012)

Ref Expression
Hypotheses isline.l ˙ = K
isline.j ˙ = join K
isline.a A = Atoms K
isline.n N = Lines K
Assertion islinei K D Q A R A Q R X = p A | p ˙ Q ˙ R X N

Proof

Step Hyp Ref Expression
1 isline.l ˙ = K
2 isline.j ˙ = join K
3 isline.a A = Atoms K
4 isline.n N = Lines K
5 simpl2 K D Q A R A Q R X = p A | p ˙ Q ˙ R Q A
6 simpl3 K D Q A R A Q R X = p A | p ˙ Q ˙ R R A
7 simpr K D Q A R A Q R X = p A | p ˙ Q ˙ R Q R X = p A | p ˙ Q ˙ R
8 neeq1 q = Q q r Q r
9 oveq1 q = Q q ˙ r = Q ˙ r
10 9 breq2d q = Q p ˙ q ˙ r p ˙ Q ˙ r
11 10 rabbidv q = Q p A | p ˙ q ˙ r = p A | p ˙ Q ˙ r
12 11 eqeq2d q = Q X = p A | p ˙ q ˙ r X = p A | p ˙ Q ˙ r
13 8 12 anbi12d q = Q q r X = p A | p ˙ q ˙ r Q r X = p A | p ˙ Q ˙ r
14 neeq2 r = R Q r Q R
15 oveq2 r = R Q ˙ r = Q ˙ R
16 15 breq2d r = R p ˙ Q ˙ r p ˙ Q ˙ R
17 16 rabbidv r = R p A | p ˙ Q ˙ r = p A | p ˙ Q ˙ R
18 17 eqeq2d r = R X = p A | p ˙ Q ˙ r X = p A | p ˙ Q ˙ R
19 14 18 anbi12d r = R Q r X = p A | p ˙ Q ˙ r Q R X = p A | p ˙ Q ˙ R
20 13 19 rspc2ev Q A R A Q R X = p A | p ˙ Q ˙ R q A r A q r X = p A | p ˙ q ˙ r
21 5 6 7 20 syl3anc K D Q A R A Q R X = p A | p ˙ Q ˙ R q A r A q r X = p A | p ˙ q ˙ r
22 simpl1 K D Q A R A Q R X = p A | p ˙ Q ˙ R K D
23 1 2 3 4 isline K D X N q A r A q r X = p A | p ˙ q ˙ r
24 22 23 syl K D Q A R A Q R X = p A | p ˙ Q ˙ R X N q A r A q r X = p A | p ˙ q ˙ r
25 21 24 mpbird K D Q A R A Q R X = p A | p ˙ Q ˙ R X N