Metamath Proof Explorer


Theorem islln2

Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses islln3.b B = Base K
islln3.j ˙ = join K
islln3.a A = Atoms K
islln3.n N = LLines K
Assertion islln2 K HL X N X B p A q A p q X = p ˙ q

Proof

Step Hyp Ref Expression
1 islln3.b B = Base K
2 islln3.j ˙ = join K
3 islln3.a A = Atoms K
4 islln3.n N = LLines K
5 1 4 llnbase X N X B
6 5 pm4.71ri X N X B X N
7 1 2 3 4 islln3 K HL X B X N p A q A p q X = p ˙ q
8 7 pm5.32da K HL X B X N X B p A q A p q X = p ˙ q
9 6 8 syl5bb K HL X N X B p A q A p q X = p ˙ q