Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
islln2
Next ⟩
llni2
Metamath Proof Explorer
Ascii
Unicode
Theorem
islln2
Description:
The predicate "is a lattice line".
(Contributed by
NM
, 23-Jun-2012)
Ref
Expression
Hypotheses
islln3.b
⊢
B
=
Base
K
islln3.j
⊢
∨
˙
=
join
⁡
K
islln3.a
⊢
A
=
Atoms
⁡
K
islln3.n
⊢
N
=
LLines
⁡
K
Assertion
islln2
⊢
K
∈
HL
→
X
∈
N
↔
X
∈
B
∧
∃
p
∈
A
∃
q
∈
A
p
≠
q
∧
X
=
p
∨
˙
q
Proof
Step
Hyp
Ref
Expression
1
islln3.b
⊢
B
=
Base
K
2
islln3.j
⊢
∨
˙
=
join
⁡
K
3
islln3.a
⊢
A
=
Atoms
⁡
K
4
islln3.n
⊢
N
=
LLines
⁡
K
5
1
4
llnbase
⊢
X
∈
N
→
X
∈
B
6
5
pm4.71ri
⊢
X
∈
N
↔
X
∈
B
∧
X
∈
N
7
1
2
3
4
islln3
⊢
K
∈
HL
∧
X
∈
B
→
X
∈
N
↔
∃
p
∈
A
∃
q
∈
A
p
≠
q
∧
X
=
p
∨
˙
q
8
7
pm5.32da
⊢
K
∈
HL
→
X
∈
B
∧
X
∈
N
↔
X
∈
B
∧
∃
p
∈
A
∃
q
∈
A
p
≠
q
∧
X
=
p
∨
˙
q
9
6
8
syl5bb
⊢
K
∈
HL
→
X
∈
N
↔
X
∈
B
∧
∃
p
∈
A
∃
q
∈
A
p
≠
q
∧
X
=
p
∨
˙
q