Metamath Proof Explorer


Theorem islln2a

Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses islln2a.j ˙ = join K
islln2a.a A = Atoms K
islln2a.n N = LLines K
Assertion islln2a K HL P A Q A P ˙ Q N P Q

Proof

Step Hyp Ref Expression
1 islln2a.j ˙ = join K
2 islln2a.a A = Atoms K
3 islln2a.n N = LLines K
4 oveq1 P = Q P ˙ Q = Q ˙ Q
5 1 2 hlatjidm K HL Q A Q ˙ Q = Q
6 5 3adant2 K HL P A Q A Q ˙ Q = Q
7 4 6 sylan9eqr K HL P A Q A P = Q P ˙ Q = Q
8 2 3 llnneat K HL Q N ¬ Q A
9 8 adantlr K HL P A Q N ¬ Q A
10 9 ex K HL P A Q N ¬ Q A
11 10 con2d K HL P A Q A ¬ Q N
12 11 3impia K HL P A Q A ¬ Q N
13 12 adantr K HL P A Q A P = Q ¬ Q N
14 7 13 eqneltrd K HL P A Q A P = Q ¬ P ˙ Q N
15 14 ex K HL P A Q A P = Q ¬ P ˙ Q N
16 15 necon2ad K HL P A Q A P ˙ Q N P Q
17 1 2 3 llni2 K HL P A Q A P Q P ˙ Q N
18 17 ex K HL P A Q A P Q P ˙ Q N
19 16 18 impbid K HL P A Q A P ˙ Q N P Q