Metamath Proof Explorer


Theorem islln3

Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses islln3.b B = Base K
islln3.j ˙ = join K
islln3.a A = Atoms K
islln3.n N = LLines K
Assertion islln3 K HL X B X N p A q A p q X = p ˙ q

Proof

Step Hyp Ref Expression
1 islln3.b B = Base K
2 islln3.j ˙ = join K
3 islln3.a A = Atoms K
4 islln3.n N = LLines K
5 eqid K = K
6 1 5 3 4 islln4 K HL X B X N p A p K X
7 simpll K HL X B p A K HL
8 1 3 atbase p A p B
9 8 adantl K HL X B p A p B
10 simplr K HL X B p A X B
11 eqid K = K
12 1 11 2 5 3 cvrval3 K HL p B X B p K X q A ¬ q K p p ˙ q = X
13 7 9 10 12 syl3anc K HL X B p A p K X q A ¬ q K p p ˙ q = X
14 hlatl K HL K AtLat
15 14 ad3antrrr K HL X B p A q A K AtLat
16 simpr K HL X B p A q A q A
17 simplr K HL X B p A q A p A
18 11 3 atncmp K AtLat q A p A ¬ q K p q p
19 15 16 17 18 syl3anc K HL X B p A q A ¬ q K p q p
20 necom q p p q
21 19 20 bitrdi K HL X B p A q A ¬ q K p p q
22 eqcom p ˙ q = X X = p ˙ q
23 22 a1i K HL X B p A q A p ˙ q = X X = p ˙ q
24 21 23 anbi12d K HL X B p A q A ¬ q K p p ˙ q = X p q X = p ˙ q
25 24 rexbidva K HL X B p A q A ¬ q K p p ˙ q = X q A p q X = p ˙ q
26 13 25 bitrd K HL X B p A p K X q A p q X = p ˙ q
27 26 rexbidva K HL X B p A p K X p A q A p q X = p ˙ q
28 6 27 bitrd K HL X B X N p A q A p q X = p ˙ q