Metamath Proof Explorer


Theorem islln4

Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b B = Base K
llnset.c C = K
llnset.a A = Atoms K
llnset.n N = LLines K
Assertion islln4 K D X B X N p A p C X

Proof

Step Hyp Ref Expression
1 llnset.b B = Base K
2 llnset.c C = K
3 llnset.a A = Atoms K
4 llnset.n N = LLines K
5 1 2 3 4 islln K D X N X B p A p C X
6 5 baibd K D X B X N p A p C X