Metamath Proof Explorer


Theorem islly

Description: The property of being a locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion islly J Locally A J Top x J y x u J 𝒫 x y u J 𝑡 u A

Proof

Step Hyp Ref Expression
1 ineq1 j = J j 𝒫 x = J 𝒫 x
2 oveq1 j = J j 𝑡 u = J 𝑡 u
3 2 eleq1d j = J j 𝑡 u A J 𝑡 u A
4 3 anbi2d j = J y u j 𝑡 u A y u J 𝑡 u A
5 1 4 rexeqbidv j = J u j 𝒫 x y u j 𝑡 u A u J 𝒫 x y u J 𝑡 u A
6 5 ralbidv j = J y x u j 𝒫 x y u j 𝑡 u A y x u J 𝒫 x y u J 𝑡 u A
7 6 raleqbi1dv j = J x j y x u j 𝒫 x y u j 𝑡 u A x J y x u J 𝒫 x y u J 𝑡 u A
8 df-lly Locally A = j Top | x j y x u j 𝒫 x y u j 𝑡 u A
9 7 8 elrab2 J Locally A J Top x J y x u J 𝒫 x y u J 𝑡 u A