Step |
Hyp |
Ref |
Expression |
1 |
|
restlly.1 |
|
2 |
|
islly2.2 |
|
3 |
|
llytop |
|
4 |
3
|
adantl |
|
5 |
|
simplr |
|
6 |
4
|
adantr |
|
7 |
2
|
topopn |
|
8 |
6 7
|
syl |
|
9 |
|
simpr |
|
10 |
|
llyi |
|
11 |
5 8 9 10
|
syl3anc |
|
12 |
|
3simpc |
|
13 |
12
|
reximi |
|
14 |
11 13
|
syl |
|
15 |
14
|
ralrimiva |
|
16 |
4 15
|
jca |
|
17 |
|
simprl |
|
18 |
|
elssuni |
|
19 |
18 2
|
sseqtrrdi |
|
20 |
19
|
adantl |
|
21 |
|
ssralv |
|
22 |
20 21
|
syl |
|
23 |
|
simpllr |
|
24 |
|
simplrl |
|
25 |
|
simprl |
|
26 |
|
inopn |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
|
vex |
|
29 |
|
inss1 |
|
30 |
28 29
|
elpwi2 |
|
31 |
30
|
a1i |
|
32 |
27 31
|
elind |
|
33 |
|
simplrr |
|
34 |
|
simprrl |
|
35 |
33 34
|
elind |
|
36 |
|
inss2 |
|
37 |
36
|
a1i |
|
38 |
|
restabs |
|
39 |
23 37 25 38
|
syl3anc |
|
40 |
|
oveq2 |
|
41 |
40
|
eleq1d |
|
42 |
|
oveq1 |
|
43 |
42
|
eleq1d |
|
44 |
43
|
raleqbi1dv |
|
45 |
1
|
ralrimivva |
|
46 |
45
|
ad3antrrr |
|
47 |
|
simprrr |
|
48 |
44 46 47
|
rspcdva |
|
49 |
|
elrestr |
|
50 |
23 25 24 49
|
syl3anc |
|
51 |
41 48 50
|
rspcdva |
|
52 |
39 51
|
eqeltrrd |
|
53 |
|
eleq2 |
|
54 |
|
oveq2 |
|
55 |
54
|
eleq1d |
|
56 |
53 55
|
anbi12d |
|
57 |
56
|
rspcev |
|
58 |
32 35 52 57
|
syl12anc |
|
59 |
58
|
rexlimdvaa |
|
60 |
59
|
anassrs |
|
61 |
60
|
ralimdva |
|
62 |
22 61
|
syld |
|
63 |
62
|
ralrimdva |
|
64 |
63
|
impr |
|
65 |
|
islly |
|
66 |
17 64 65
|
sylanbrc |
|
67 |
16 66
|
impbida |
|