Step |
Hyp |
Ref |
Expression |
1 |
|
islmhm.k |
|
2 |
|
islmhm.l |
|
3 |
|
islmhm.b |
|
4 |
|
islmhm.e |
|
5 |
|
islmhm.m |
|
6 |
|
islmhm.n |
|
7 |
|
df-lmhm |
|
8 |
7
|
elmpocl |
|
9 |
|
oveq12 |
|
10 |
|
fvexd |
|
11 |
|
simplr |
|
12 |
11
|
fveq2d |
|
13 |
12 2
|
eqtr4di |
|
14 |
|
simpr |
|
15 |
|
simpll |
|
16 |
15
|
fveq2d |
|
17 |
14 16
|
eqtrd |
|
18 |
17 1
|
eqtr4di |
|
19 |
13 18
|
eqeq12d |
|
20 |
18
|
fveq2d |
|
21 |
20 3
|
eqtr4di |
|
22 |
15
|
fveq2d |
|
23 |
22 4
|
eqtr4di |
|
24 |
15
|
fveq2d |
|
25 |
24 5
|
eqtr4di |
|
26 |
25
|
oveqd |
|
27 |
26
|
fveq2d |
|
28 |
11
|
fveq2d |
|
29 |
28 6
|
eqtr4di |
|
30 |
29
|
oveqd |
|
31 |
27 30
|
eqeq12d |
|
32 |
23 31
|
raleqbidv |
|
33 |
21 32
|
raleqbidv |
|
34 |
19 33
|
anbi12d |
|
35 |
10 34
|
sbcied |
|
36 |
9 35
|
rabeqbidv |
|
37 |
|
ovex |
|
38 |
37
|
rabex |
|
39 |
36 7 38
|
ovmpoa |
|
40 |
39
|
eleq2d |
|
41 |
|
fveq1 |
|
42 |
|
fveq1 |
|
43 |
42
|
oveq2d |
|
44 |
41 43
|
eqeq12d |
|
45 |
44
|
2ralbidv |
|
46 |
45
|
anbi2d |
|
47 |
46
|
elrab |
|
48 |
|
3anass |
|
49 |
47 48
|
bitr4i |
|
50 |
40 49
|
bitrdi |
|
51 |
8 50
|
biadanii |
|