Metamath Proof Explorer


Theorem islmhm

Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015) (Proof shortened by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses islmhm.k K = Scalar S
islmhm.l L = Scalar T
islmhm.b B = Base K
islmhm.e E = Base S
islmhm.m · ˙ = S
islmhm.n × ˙ = T
Assertion islmhm F S LMHom T S LMod T LMod F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y

Proof

Step Hyp Ref Expression
1 islmhm.k K = Scalar S
2 islmhm.l L = Scalar T
3 islmhm.b B = Base K
4 islmhm.e E = Base S
5 islmhm.m · ˙ = S
6 islmhm.n × ˙ = T
7 df-lmhm LMHom = s LMod , t LMod f s GrpHom t | [˙ Scalar s / w]˙ Scalar t = w x Base w y Base s f x s y = x t f y
8 7 elmpocl F S LMHom T S LMod T LMod
9 oveq12 s = S t = T s GrpHom t = S GrpHom T
10 fvexd s = S t = T Scalar s V
11 simplr s = S t = T w = Scalar s t = T
12 11 fveq2d s = S t = T w = Scalar s Scalar t = Scalar T
13 12 2 eqtr4di s = S t = T w = Scalar s Scalar t = L
14 simpr s = S t = T w = Scalar s w = Scalar s
15 simpll s = S t = T w = Scalar s s = S
16 15 fveq2d s = S t = T w = Scalar s Scalar s = Scalar S
17 14 16 eqtrd s = S t = T w = Scalar s w = Scalar S
18 17 1 eqtr4di s = S t = T w = Scalar s w = K
19 13 18 eqeq12d s = S t = T w = Scalar s Scalar t = w L = K
20 18 fveq2d s = S t = T w = Scalar s Base w = Base K
21 20 3 eqtr4di s = S t = T w = Scalar s Base w = B
22 15 fveq2d s = S t = T w = Scalar s Base s = Base S
23 22 4 eqtr4di s = S t = T w = Scalar s Base s = E
24 15 fveq2d s = S t = T w = Scalar s s = S
25 24 5 eqtr4di s = S t = T w = Scalar s s = · ˙
26 25 oveqd s = S t = T w = Scalar s x s y = x · ˙ y
27 26 fveq2d s = S t = T w = Scalar s f x s y = f x · ˙ y
28 11 fveq2d s = S t = T w = Scalar s t = T
29 28 6 eqtr4di s = S t = T w = Scalar s t = × ˙
30 29 oveqd s = S t = T w = Scalar s x t f y = x × ˙ f y
31 27 30 eqeq12d s = S t = T w = Scalar s f x s y = x t f y f x · ˙ y = x × ˙ f y
32 23 31 raleqbidv s = S t = T w = Scalar s y Base s f x s y = x t f y y E f x · ˙ y = x × ˙ f y
33 21 32 raleqbidv s = S t = T w = Scalar s x Base w y Base s f x s y = x t f y x B y E f x · ˙ y = x × ˙ f y
34 19 33 anbi12d s = S t = T w = Scalar s Scalar t = w x Base w y Base s f x s y = x t f y L = K x B y E f x · ˙ y = x × ˙ f y
35 10 34 sbcied s = S t = T [˙ Scalar s / w]˙ Scalar t = w x Base w y Base s f x s y = x t f y L = K x B y E f x · ˙ y = x × ˙ f y
36 9 35 rabeqbidv s = S t = T f s GrpHom t | [˙ Scalar s / w]˙ Scalar t = w x Base w y Base s f x s y = x t f y = f S GrpHom T | L = K x B y E f x · ˙ y = x × ˙ f y
37 ovex S GrpHom T V
38 37 rabex f S GrpHom T | L = K x B y E f x · ˙ y = x × ˙ f y V
39 36 7 38 ovmpoa S LMod T LMod S LMHom T = f S GrpHom T | L = K x B y E f x · ˙ y = x × ˙ f y
40 39 eleq2d S LMod T LMod F S LMHom T F f S GrpHom T | L = K x B y E f x · ˙ y = x × ˙ f y
41 fveq1 f = F f x · ˙ y = F x · ˙ y
42 fveq1 f = F f y = F y
43 42 oveq2d f = F x × ˙ f y = x × ˙ F y
44 41 43 eqeq12d f = F f x · ˙ y = x × ˙ f y F x · ˙ y = x × ˙ F y
45 44 2ralbidv f = F x B y E f x · ˙ y = x × ˙ f y x B y E F x · ˙ y = x × ˙ F y
46 45 anbi2d f = F L = K x B y E f x · ˙ y = x × ˙ f y L = K x B y E F x · ˙ y = x × ˙ F y
47 46 elrab F f S GrpHom T | L = K x B y E f x · ˙ y = x × ˙ f y F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y
48 3anass F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y
49 47 48 bitr4i F f S GrpHom T | L = K x B y E f x · ˙ y = x × ˙ f y F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y
50 40 49 bitrdi S LMod T LMod F S LMHom T F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y
51 8 50 biadanii F S LMHom T S LMod T LMod F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y