Metamath Proof Explorer


Theorem islmhm3

Description: Property of a module homomorphism, similar to ismhm . (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypotheses islmhm.k K = Scalar S
islmhm.l L = Scalar T
islmhm.b B = Base K
islmhm.e E = Base S
islmhm.m · ˙ = S
islmhm.n × ˙ = T
Assertion islmhm3 S LMod T LMod F S LMHom T F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y

Proof

Step Hyp Ref Expression
1 islmhm.k K = Scalar S
2 islmhm.l L = Scalar T
3 islmhm.b B = Base K
4 islmhm.e E = Base S
5 islmhm.m · ˙ = S
6 islmhm.n × ˙ = T
7 1 2 3 4 5 6 islmhm F S LMHom T S LMod T LMod F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y
8 7 baib S LMod T LMod F S LMHom T F S GrpHom T L = K x B y E F x · ˙ y = x × ˙ F y