Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
islmhmd
Next ⟩
0lmhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
islmhmd
Description:
Deduction for a module homomorphism.
(Contributed by
Stefan O'Rear
, 4-Feb-2015)
Ref
Expression
Hypotheses
islmhmd.x
⊢
X
=
Base
S
islmhmd.a
⊢
·
˙
=
⋅
S
islmhmd.b
⊢
×
˙
=
⋅
T
islmhmd.k
⊢
K
=
Scalar
⁡
S
islmhmd.j
⊢
J
=
Scalar
⁡
T
islmhmd.n
⊢
N
=
Base
K
islmhmd.s
⊢
φ
→
S
∈
LMod
islmhmd.t
⊢
φ
→
T
∈
LMod
islmhmd.c
⊢
φ
→
J
=
K
islmhmd.f
⊢
φ
→
F
∈
S
GrpHom
T
islmhmd.l
⊢
φ
∧
x
∈
N
∧
y
∈
X
→
F
⁡
x
·
˙
y
=
x
×
˙
F
⁡
y
Assertion
islmhmd
⊢
φ
→
F
∈
S
LMHom
T
Proof
Step
Hyp
Ref
Expression
1
islmhmd.x
⊢
X
=
Base
S
2
islmhmd.a
⊢
·
˙
=
⋅
S
3
islmhmd.b
⊢
×
˙
=
⋅
T
4
islmhmd.k
⊢
K
=
Scalar
⁡
S
5
islmhmd.j
⊢
J
=
Scalar
⁡
T
6
islmhmd.n
⊢
N
=
Base
K
7
islmhmd.s
⊢
φ
→
S
∈
LMod
8
islmhmd.t
⊢
φ
→
T
∈
LMod
9
islmhmd.c
⊢
φ
→
J
=
K
10
islmhmd.f
⊢
φ
→
F
∈
S
GrpHom
T
11
islmhmd.l
⊢
φ
∧
x
∈
N
∧
y
∈
X
→
F
⁡
x
·
˙
y
=
x
×
˙
F
⁡
y
12
11
ralrimivva
⊢
φ
→
∀
x
∈
N
∀
y
∈
X
F
⁡
x
·
˙
y
=
x
×
˙
F
⁡
y
13
10
9
12
3jca
⊢
φ
→
F
∈
S
GrpHom
T
∧
J
=
K
∧
∀
x
∈
N
∀
y
∈
X
F
⁡
x
·
˙
y
=
x
×
˙
F
⁡
y
14
4
5
6
1
2
3
islmhm
⊢
F
∈
S
LMHom
T
↔
S
∈
LMod
∧
T
∈
LMod
∧
F
∈
S
GrpHom
T
∧
J
=
K
∧
∀
x
∈
N
∀
y
∈
X
F
⁡
x
·
˙
y
=
x
×
˙
F
⁡
y
15
7
8
13
14
syl21anbrc
⊢
φ
→
F
∈
S
LMHom
T