Metamath Proof Explorer


Theorem islmhmd

Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)

Ref Expression
Hypotheses islmhmd.x X = Base S
islmhmd.a · ˙ = S
islmhmd.b × ˙ = T
islmhmd.k K = Scalar S
islmhmd.j J = Scalar T
islmhmd.n N = Base K
islmhmd.s φ S LMod
islmhmd.t φ T LMod
islmhmd.c φ J = K
islmhmd.f φ F S GrpHom T
islmhmd.l φ x N y X F x · ˙ y = x × ˙ F y
Assertion islmhmd φ F S LMHom T

Proof

Step Hyp Ref Expression
1 islmhmd.x X = Base S
2 islmhmd.a · ˙ = S
3 islmhmd.b × ˙ = T
4 islmhmd.k K = Scalar S
5 islmhmd.j J = Scalar T
6 islmhmd.n N = Base K
7 islmhmd.s φ S LMod
8 islmhmd.t φ T LMod
9 islmhmd.c φ J = K
10 islmhmd.f φ F S GrpHom T
11 islmhmd.l φ x N y X F x · ˙ y = x × ˙ F y
12 11 ralrimivva φ x N y X F x · ˙ y = x × ˙ F y
13 10 9 12 3jca φ F S GrpHom T J = K x N y X F x · ˙ y = x × ˙ F y
14 4 5 6 1 2 3 islmhm F S LMHom T S LMod T LMod F S GrpHom T J = K x N y X F x · ˙ y = x × ˙ F y
15 7 8 13 14 syl21anbrc φ F S LMHom T