Metamath Proof Explorer


Theorem islnm

Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypothesis islnm.s S = LSubSp M
Assertion islnm M LNoeM M LMod i S M 𝑠 i LFinGen

Proof

Step Hyp Ref Expression
1 islnm.s S = LSubSp M
2 fveq2 w = M LSubSp w = LSubSp M
3 2 1 eqtr4di w = M LSubSp w = S
4 oveq1 w = M w 𝑠 i = M 𝑠 i
5 4 eleq1d w = M w 𝑠 i LFinGen M 𝑠 i LFinGen
6 3 5 raleqbidv w = M i LSubSp w w 𝑠 i LFinGen i S M 𝑠 i LFinGen
7 df-lnm LNoeM = w LMod | i LSubSp w w 𝑠 i LFinGen
8 6 7 elrab2 M LNoeM M LMod i S M 𝑠 i LFinGen