Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Noetherian left modules I
islnm
Next ⟩
islnm2
Metamath Proof Explorer
Ascii
Unicode
Theorem
islnm
Description:
Property of being a Noetherian left module.
(Contributed by
Stefan O'Rear
, 12-Dec-2014)
Ref
Expression
Hypothesis
islnm.s
⊢
S
=
LSubSp
⁡
M
Assertion
islnm
⊢
M
∈
LNoeM
↔
M
∈
LMod
∧
∀
i
∈
S
M
↾
𝑠
i
∈
LFinGen
Proof
Step
Hyp
Ref
Expression
1
islnm.s
⊢
S
=
LSubSp
⁡
M
2
fveq2
⊢
w
=
M
→
LSubSp
⁡
w
=
LSubSp
⁡
M
3
2
1
eqtr4di
⊢
w
=
M
→
LSubSp
⁡
w
=
S
4
oveq1
⊢
w
=
M
→
w
↾
𝑠
i
=
M
↾
𝑠
i
5
4
eleq1d
⊢
w
=
M
→
w
↾
𝑠
i
∈
LFinGen
↔
M
↾
𝑠
i
∈
LFinGen
6
3
5
raleqbidv
⊢
w
=
M
→
∀
i
∈
LSubSp
⁡
w
w
↾
𝑠
i
∈
LFinGen
↔
∀
i
∈
S
M
↾
𝑠
i
∈
LFinGen
7
df-lnm
⊢
LNoeM
=
w
∈
LMod
|
∀
i
∈
LSubSp
⁡
w
w
↾
𝑠
i
∈
LFinGen
8
6
7
elrab2
⊢
M
∈
LNoeM
↔
M
∈
LMod
∧
∀
i
∈
S
M
↾
𝑠
i
∈
LFinGen