Metamath Proof Explorer


Theorem islnoppd

Description: Deduce that A and B lie on opposite sides of line L . (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
islnoppd.a φ A P
islnoppd.b φ B P
islnoppd.c φ C D
islnoppd.1 φ ¬ A D
islnoppd.2 φ ¬ B D
islnoppd.3 φ C A I B
Assertion islnoppd φ A O B

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 islnoppd.a φ A P
6 islnoppd.b φ B P
7 islnoppd.c φ C D
8 islnoppd.1 φ ¬ A D
9 islnoppd.2 φ ¬ B D
10 islnoppd.3 φ C A I B
11 simpr φ t = C t = C
12 11 eleq1d φ t = C t A I B C A I B
13 7 12 10 rspcedvd φ t D t A I B
14 8 9 13 jca31 φ ¬ A D ¬ B D t D t A I B
15 1 2 3 4 5 6 islnopp φ A O B ¬ A D ¬ B D t D t A I B
16 14 15 mpbird φ A O B