Metamath Proof Explorer


Theorem islnr

Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion islnr A LNoeR A Ring ringLMod A LNoeM

Proof

Step Hyp Ref Expression
1 fveq2 a = A ringLMod a = ringLMod A
2 1 eleq1d a = A ringLMod a LNoeM ringLMod A LNoeM
3 df-lnr LNoeR = a Ring | ringLMod a LNoeM
4 2 3 elrab2 A LNoeR A Ring ringLMod A LNoeM