Metamath Proof Explorer


Theorem islnr2

Description: Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnr2.b B = Base R
islnr2.u U = LIdeal R
islnr2.n N = RSpan R
Assertion islnr2 R LNoeR R Ring i U g 𝒫 B Fin i = N g

Proof

Step Hyp Ref Expression
1 islnr2.b B = Base R
2 islnr2.u U = LIdeal R
3 islnr2.n N = RSpan R
4 islnr R LNoeR R Ring ringLMod R LNoeM
5 rlmlmod R Ring ringLMod R LMod
6 rlmbas Base R = Base ringLMod R
7 1 6 eqtri B = Base ringLMod R
8 lidlval LIdeal R = LSubSp ringLMod R
9 2 8 eqtri U = LSubSp ringLMod R
10 rspval RSpan R = LSpan ringLMod R
11 3 10 eqtri N = LSpan ringLMod R
12 7 9 11 islnm2 ringLMod R LNoeM ringLMod R LMod i U g 𝒫 B Fin i = N g
13 12 baib ringLMod R LMod ringLMod R LNoeM i U g 𝒫 B Fin i = N g
14 5 13 syl R Ring ringLMod R LNoeM i U g 𝒫 B Fin i = N g
15 14 pm5.32i R Ring ringLMod R LNoeM R Ring i U g 𝒫 B Fin i = N g
16 4 15 bitri R LNoeR R Ring i U g 𝒫 B Fin i = N g