Metamath Proof Explorer


Theorem islnr3

Description: Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses islnr3.b B = Base R
islnr3.u U = LIdeal R
Assertion islnr3 R LNoeR R Ring U NoeACS B

Proof

Step Hyp Ref Expression
1 islnr3.b B = Base R
2 islnr3.u U = LIdeal R
3 eqid RSpan R = RSpan R
4 1 2 3 islnr2 R LNoeR R Ring x U y 𝒫 B Fin x = RSpan R y
5 eqid mrCls U = mrCls U
6 2 3 5 mrcrsp R Ring RSpan R = mrCls U
7 6 fveq1d R Ring RSpan R y = mrCls U y
8 7 eqeq2d R Ring x = RSpan R y x = mrCls U y
9 8 rexbidv R Ring y 𝒫 B Fin x = RSpan R y y 𝒫 B Fin x = mrCls U y
10 9 ralbidv R Ring x U y 𝒫 B Fin x = RSpan R y x U y 𝒫 B Fin x = mrCls U y
11 1 2 lidlacs R Ring U ACS B
12 11 biantrurd R Ring x U y 𝒫 B Fin x = mrCls U y U ACS B x U y 𝒫 B Fin x = mrCls U y
13 10 12 bitrd R Ring x U y 𝒫 B Fin x = RSpan R y U ACS B x U y 𝒫 B Fin x = mrCls U y
14 5 isnacs U NoeACS B U ACS B x U y 𝒫 B Fin x = mrCls U y
15 13 14 bitr4di R Ring x U y 𝒫 B Fin x = RSpan R y U NoeACS B
16 15 pm5.32i R Ring x U y 𝒫 B Fin x = RSpan R y R Ring U NoeACS B
17 4 16 bitri R LNoeR R Ring U NoeACS B