| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islocfin.1 |
|
| 2 |
|
islocfin.2 |
|
| 3 |
|
df-locfin |
|
| 4 |
3
|
mptrcl |
|
| 5 |
|
eqimss2 |
|
| 6 |
|
sspwuni |
|
| 7 |
5 6
|
sylibr |
|
| 8 |
|
velpw |
|
| 9 |
7 8
|
sylibr |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
abssi |
|
| 12 |
1
|
topopn |
|
| 13 |
|
pwexg |
|
| 14 |
|
pwexg |
|
| 15 |
12 13 14
|
3syl |
|
| 16 |
|
ssexg |
|
| 17 |
11 15 16
|
sylancr |
|
| 18 |
|
unieq |
|
| 19 |
18 1
|
eqtr4di |
|
| 20 |
19
|
eqeq1d |
|
| 21 |
|
rexeq |
|
| 22 |
19 21
|
raleqbidv |
|
| 23 |
20 22
|
anbi12d |
|
| 24 |
23
|
abbidv |
|
| 25 |
24 3
|
fvmptg |
|
| 26 |
17 25
|
mpdan |
|
| 27 |
26
|
eleq2d |
|
| 28 |
|
elex |
|
| 29 |
28
|
adantl |
|
| 30 |
|
simpr |
|
| 31 |
30 2
|
eqtrdi |
|
| 32 |
12
|
adantr |
|
| 33 |
31 32
|
eqeltrrd |
|
| 34 |
33
|
elexd |
|
| 35 |
|
uniexb |
|
| 36 |
34 35
|
sylibr |
|
| 37 |
36
|
adantrr |
|
| 38 |
|
unieq |
|
| 39 |
38 2
|
eqtr4di |
|
| 40 |
39
|
eqeq2d |
|
| 41 |
|
rabeq |
|
| 42 |
41
|
eleq1d |
|
| 43 |
42
|
anbi2d |
|
| 44 |
43
|
rexbidv |
|
| 45 |
44
|
ralbidv |
|
| 46 |
40 45
|
anbi12d |
|
| 47 |
46
|
elabg |
|
| 48 |
29 37 47
|
pm5.21nd |
|
| 49 |
27 48
|
bitrd |
|
| 50 |
4 49
|
biadanii |
|
| 51 |
|
3anass |
|
| 52 |
50 51
|
bitr4i |
|