Database
BASIC TOPOLOGY
Topology
Limit points and perfect sets
islp
Next ⟩
lpsscls
Metamath Proof Explorer
Ascii
Unicode
Theorem
islp
Description:
The predicate "the class
P
is a limit point of
S
".
(Contributed by
NM
, 10-Feb-2007)
Ref
Expression
Hypothesis
lpfval.1
⊢
X
=
⋃
J
Assertion
islp
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
limPt
⁡
J
⁡
S
↔
P
∈
cls
⁡
J
⁡
S
∖
P
Proof
Step
Hyp
Ref
Expression
1
lpfval.1
⊢
X
=
⋃
J
2
1
lpval
⊢
J
∈
Top
∧
S
⊆
X
→
limPt
⁡
J
⁡
S
=
x
|
x
∈
cls
⁡
J
⁡
S
∖
x
3
2
eleq2d
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
limPt
⁡
J
⁡
S
↔
P
∈
x
|
x
∈
cls
⁡
J
⁡
S
∖
x
4
id
⊢
P
∈
cls
⁡
J
⁡
S
∖
P
→
P
∈
cls
⁡
J
⁡
S
∖
P
5
id
⊢
x
=
P
→
x
=
P
6
sneq
⊢
x
=
P
→
x
=
P
7
6
difeq2d
⊢
x
=
P
→
S
∖
x
=
S
∖
P
8
7
fveq2d
⊢
x
=
P
→
cls
⁡
J
⁡
S
∖
x
=
cls
⁡
J
⁡
S
∖
P
9
5
8
eleq12d
⊢
x
=
P
→
x
∈
cls
⁡
J
⁡
S
∖
x
↔
P
∈
cls
⁡
J
⁡
S
∖
P
10
4
9
elab3
⊢
P
∈
x
|
x
∈
cls
⁡
J
⁡
S
∖
x
↔
P
∈
cls
⁡
J
⁡
S
∖
P
11
3
10
bitrdi
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
limPt
⁡
J
⁡
S
↔
P
∈
cls
⁡
J
⁡
S
∖
P