Metamath Proof Explorer


Theorem islp

Description: The predicate "the class P is a limit point of S ". (Contributed by NM, 10-Feb-2007)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion islp J Top S X P limPt J S P cls J S P

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 lpval J Top S X limPt J S = x | x cls J S x
3 2 eleq2d J Top S X P limPt J S P x | x cls J S x
4 id P cls J S P P cls J S P
5 id x = P x = P
6 sneq x = P x = P
7 6 difeq2d x = P S x = S P
8 7 fveq2d x = P cls J S x = cls J S P
9 5 8 eleq12d x = P x cls J S x P cls J S P
10 4 9 elab3 P x | x cls J S x P cls J S P
11 3 10 bitrdi J Top S X P limPt J S P cls J S P